期刊文献+

基于卷积神经网络与多特征融合的Twitter情感分类方法 被引量:28

Twitter Sentiment Classification Method Based on Convolutional Neutral Network and Multi-feature Fusion
在线阅读 下载PDF
导出
摘要 为了对社交网络平台上发表的言论和信息进行情感分类,基于卷积神经网络和多特征融合,提出一种情感分类方法。结合Twitter自身语言特性和情感字典资源设计语料特征和词典特征,对Twitter文本词向量使用卷积神经网络获得对应的深度词向量特征,将上述3类特征进行特征融合并采用One-Versus-One SVM实现情感极性的分类判别。针对SemEval语料的实验结果表明,该方法取得了较好的情感分类效果,多特征融合能够有效地提高情感分类的准确性。 In order to classify the emotion for users expressions and comments on social networks,this paper presents a sentiment classification method which combines Convolutional Neural Network(CNN) and multi-feature fusion.It designs corpus features and lexicon features according to the characteristics of Twitter texts and semantic lexicons,uses the convolution neural network for the word vector of Twitter text to get the depth word vector features,combines the above three features to construct the feature fusion and uses One-Versus-One SVM to obtain the sentiment polarity classification and discrimination.Experimental results on SemEval corpus show this method performs a good result and the multi-feature fusion can efficiently improve the accuracy of sentiment classification.
出处 《计算机工程》 CAS CSCD 北大核心 2018年第2期210-219,共10页 Computer Engineering
基金 国家自然科学基金(61373108)
关键词 文本分类 情感分析 卷积神经网络 词向量 特征融合 text classification sentiment analysis Convolutional Neural Network(CNN) word vector feature fusion
  • 相关文献

参考文献5

二级参考文献62

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 2孙茜.Web2.0的含义、特征与应用研究[J].现代情报,2006,26(2):69-70. 被引量:162
  • 3徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:124
  • 4M.Q. Hu, B. Liu. Mining and Summarizing Custom- er Reviews[C]//ACM SIGKDD 2004.. 168-177.
  • 5Bo Pang, Lillian Lee. Opinion mining and sentiment a- nalysis[C]//Foundations and Trends in Information Retrieval, 2(1-2):1-135.
  • 6M.Q. Hu, B. Liu. Opinion Extraction and Summari- zation on the Web[C]//AAAI06, Boston: 1621-1624.
  • 7H. Yu, V. Hatzivassiloglou. Towards Answering O- pinion Question: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences[C]// EMNLP'03 : 129-136.
  • 8Bo Pang, Lillian Lee, Shivakumar Vaithyanathan. Thumbs up? sentiment classification using machine learning techniques[C]//ACL'02: 79-86.
  • 9Bo Pang, Lillian Lee. A sentimental education: Senti- ment analysis using subjectivity summarization based on minimum cuts[C]//ACL'04: 271-278.
  • 10E. Riloff, J. Wiebe. 2003. Learning extraction pat-terns for subjective expressions[C]//EMNLP'03: 105- 112.

共引文献833

同被引文献257

引证文献28

二级引证文献169

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部