期刊文献+

一种改进K-奇异值分解稀疏表示图像去噪算法 被引量:8

An Image Denoising Algorithm via Sparse and Redundant Representations over Improved K-singular Value Decomposition Algorithm
在线阅读 下载PDF
导出
摘要 为解决传统K-奇异值分解(K-SVD)算法字典训练耗时过长以及低信噪比情形下去噪效果不佳的问题,提出了一种改进算法。首先将原始含噪图像进行高低频分离,然后对图像的高频部分使用基于残差比阈值的批量正交匹配追踪算法(Batch-OMP)实现稀疏重构,最后将图像的高低频部分叠加完成最终的去噪。实验结果表明,相较于小波变换去噪、DCT稀疏表示去噪以及传统K-SVD稀疏表示去噪,改进的算法能够更好地保留图像的边缘轮廓信息,并且去噪时间明显缩短。 To solve the problem that the traditional K-singular value decomposition( K-SVD) algorithm dictionary training is too time-consuming and the de-noising effect is poor under low signal-to-noise ratio,an improved algorithm is proposed. Firstly,the original noisy image is separated by high and low frequencies. Secondly,on the basis of residual ratio threshold,the batch-orthogonal matching pursuit( Batch-OMP) algorithm is applied for the high frequency part of the image to realize the sparse reconstruction. Finally,the high and low frequency parts of the image is superimposed to complete the final denoising. The experiments show that the proposed algorithm can better preserve the edge contour information of the image,and the time of denoising is obviously shorter than that of wavelet transform denoising,DCT sparse denoising and traditional K-SVD sparse denoising.
出处 《科学技术与工程》 北大核心 2018年第1期287-292,共6页 Science Technology and Engineering
关键词 K-奇异值分解(K-SVD)算法 图像去噪 残差比阈值 稀疏表示 K-SVD algorithm image denoising residual ratio sparse representation
  • 相关文献

参考文献4

二级参考文献58

  • 1韩玉兵,陈小蔷,吴乐南.一种视频序列的超分辨率重建算法[J].电子学报,2005,33(1):126-130. 被引量:8
  • 2王建英,尹忠科.基于稀疏分解的微弱信号检测方法[J].铁道学报,2007,29(2):114-117. 被引量:10
  • 3Abdallah S A, Plumbley M D. Unsupervised analysis of polyphonic music by sparse coding [J].IEEE Transactions on Neural Networks, 2006, 17 ( 1 ) : 179- 196.
  • 4Malioutov D M, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8) :3010-3022.
  • 5Liu H H, Schimpf P H, Dong G Y. Standardized shrinking LORETA-FOCUSS (SSLOFO) : A new algorithm for spatio-temporal EEG source reconstruc-tion [J].IEEE Transactions on Biomedical Engineering, 2005, 52(10):1681-1691.
  • 6Chen S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit [J]. SIAM Review, 2001, 43(1): 129-159.
  • 7Yeste-Ojeda O A, Grajal J. Atomic decomposition for ISAR imaging [C-]//IEEE Conference on Radar. [s. l. ]:IEEE, 2006: 504-509.
  • 8Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries [J]. IEEE Transactions on Signal Processing, 1993,41(12) : 3397-3415.
  • 9Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition [J]. IEEE Transactions on Information Theory, 2001, 47(7) :2845-2862.
  • 10Donoho D L. Wedgelets: Nearly-minimax estimation of edges [J]. The Annals of Statistics, 1999, 27 (3) : 959-897.

共引文献106

同被引文献57

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部