期刊文献+

基于视频检测的轨道交通短时客流预测研究 被引量:4

Short-time Passenger Flow Prediction of Rail Transit based on Video Frequency Detection
在线阅读 下载PDF
导出
摘要 为提高客流预测的精度,构建轨道交通站点客流多变量时间序列预测模型。基于视频检测的轨道交通短时客流预测研究采用方向梯度直方图特征描述器与支持向量机分类器识别行人目标,利用Camshift算法对目标跟踪,从而获取客流量和客流速度参数,并根据协整关系构建客流多变量预测的向量误差修正模型,最后利用南京鼓楼车站4A通道的视频数据进行模型验证和对比分析。实例验证结果表明:构建的向量误差修正模型具有较好的预测性能,客流量和速度预测的MAPE值都小于8%,优于相同样本下ARIMA(0,1,1)的预测性能。 In order to improve the accuracy of passenger flow state prediction, a multivariate time series forecasting model is proposed for the forecast of the passenger flow state. For the research on short-time passenger flow forecast based on video frequency, it adopts the directional gradient histogram feature descriptor and support vector machine detection to identify pedestrian targets, and uses the Camshift algorithm to track the target, so as to access the parameters of passenger flow and speed, and then establish the vector error correction model according to the co-integration relation between parameters. Finally, validation and comparative analysis are carried out using 4A channel video frequency data measured at Gulou station in Nanjing, the results show that the model constructed in this paper has a better prediction performance. The MAPE value of both the passenger flow and speed is less than 8%, which is better than the ARIMA (0,1,1) prediction performance established by the same sample data.
出处 《铁路通信信号工程技术》 2018年第1期50-55,共6页 Railway Signalling & Communication Engineering
基金 交通运输部建设科技项目(2015318J33080) 江苏省重点研发计划(社会发展)项目(BE2016740) 南京地铁运营有限责任公司专项项目(8550140226)
关键词 城市轨道交通 短时预测 向量误差修正模型 性能评估 urban rail transit short-time prediction vector error correction model performance evaluation
  • 相关文献

参考文献6

二级参考文献52

  • 1吴祥云,刘灿齐.轨道交通客流量均衡分配模型与算法[J].同济大学学报(自然科学版),2004,32(9):1158-1162. 被引量:58
  • 2杨兆升,王媛,管青.基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学版),2006,36(6):881-884. 被引量:82
  • 3周小鹏,冯奇,孙立军.基于最近邻法的短时交通流预测[J].同济大学学报(自然科学版),2006,34(11):1494-1498. 被引量:22
  • 4姚智胜,邵春福.基于状态空间模型的道路交通状态多点时间序列预测[J].中国公路学报,2007,20(4):113-117. 被引量:24
  • 5韩立群.人工神经网络理论、设计及应用.北京:化学工业出版社,2007.38
  • 6韩立群.人工神经网路理论、设计及应用.北京:化学工业出版社,2007;47-48.
  • 7Tsai, 丁. M. Lee, C. K.. Wei. Chien Hung Neuralnetwork based temporal feature models forshort-term railway passenger demand forecasting[J]. Expert Systems with Applications, 2009,36(2):3728-3736.
  • 8陈茔.城市轨道交通运行状况If估研究[D].南京:东南大学,2011.
  • 9Srinivasan S., Haris N. K., Moshe B., et al.Simulation-based dynamic traffic assignment forshort-term planning applications [J]. SimulationModelling Practice and Theory,2011, 19 (1):450-462.
  • 10Williams B. M., Durvasula P. K., Brown D. E..Urban freeway traffic flow Prediction: applicationof seasonal autoregressive integrated movingaverage and exponential smoothing models [J].Transportation Research Record, 1998, 1644:132-141.

共引文献127

同被引文献16

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部