期刊文献+

防发散自适应网格模糊神经交互多模型算法

Algorithm of Anti-Divergent Adaptive Grid and Fuzzy Neural Interacting Multiple Model
在线阅读 下载PDF
导出
摘要 针对机动目标跟踪问题中,固定结构多模型(FSMM)算法效费比不高、容易滤波器发散以及交互式多模型(IMM)算法模型的后验概率计算过程繁琐的问题,研究了一种防发散自适应网格模糊神经交互多模型(AD-AG-AIMM)算法。上述算法对标准卡尔曼滤波器进行了防发散处理,通过自适应网格调整实现了模型集自适应,通过ANFIS系统得到模型集中各个模型的匹配度。仿真结果表明,AD-AG-AIMM算法与标准的IMM算法相比,可以有效提高多模型算法的精度和效费比,特别是对目标机动的适应能力显著提高,且适合工程实用。 ABSTRACT : For the maneuvering target tracking problem, the efficiency-cost ratio of fixed structure multi model of (FSMM) algorithm is low, which easily leads to the filter divergence, and the calculation process of posterior proba- bility of interacting multiple model (IMM) algorithm is too complex. In this article, an algorithm of fuzzy neural in- teracting multi-model is proposed based on anti-divergent adaptive grid (AD-AG-AIMM). The algorithm performed an anti-divergence treatment in standard Kalman filter, and realized the model set adaptation through adjusting adap- tive grid. Thus, each matching degree of model in model set was obtained through ANFIS system. Simulation results prove that compared with standard IMM algorithm, the AD-AG-AIMM algorithm can effectively improve the accuracy and efficiency-cost ratio of multi-model algorithm. Especially, it remarkably improves the self-adaptive ability of target maneuvering, which is suitable for engineering.
出处 《计算机仿真》 北大核心 2018年第1期239-242,250,共5页 Computer Simulation
关键词 机动目标跟踪 防发散 自适应网格 模糊神经 Maneuvering target tracking Anti-divergent Self-adaptive mesh Fuzzy neural
  • 相关文献

参考文献3

二级参考文献26

  • 1Li X R ,Bar-Shalom Y .Multiple-Model Estimation with Variable Structure [J].IEEE Trans on Automatic Control, 1996,41(4) :478-493.
  • 2Li X R ,Zhi X R,Zhang Y M. Multiple-model Estimation with Variable Structure--PartIII:Model-group Switching Al- gorithm[ J ].IEEE Trans on AES, 1999,35( 1 ): 225-241.
  • 3Li X R,Zhang Y M. Multiple-model Estimation with Vari- able Structure--part V: Likely-model Set Algorithm [J]. IEEE Trans on AES, 2000,36(2): 448-466.
  • 4刘高峰,顾雪峰,王华楠.强机动目标跟踪的两种MM算法设计与比较[J].系统真学报,2009,21(4):965-968.
  • 5ZHEN D,LANG H.A distributed IMM fusion algorithm for multi-platform tracking[J].Elsevier,1998,64:167-176.
  • 6WU P L,LI X X.Passive multi-sensor maneuvering target trac-king based on UKF-IMM Algorithm[C].WASE International Conference on Information Engineering,2009:135-138.
  • 7WU W R,CHENG P P.A nonlinear IMM algorith for maneuvering target tracking[J].IEEE Transactions on Aerospace and Electronic Systems,1994,30:875-885.
  • 8TAN-jAN H.A switched IMM-extended viterbi estimatorbased algorithm for maneuvering target tracking[J].Automatica,2011,47:92-98.
  • 9GAO Liang,MA Zhen-liang,SHA Jun-chen,et al.Improved IMM algorithm for nonlinear mane-uvering target tracking[C].International Workshop on Information and Electronics Engineering,2012:4117-4123.
  • 10YI L,LV M.Research method for tracking high speed and highly maneuvering target[C].6th International Conference on ITS Telecommunications Proceedings,2006:1236-1239.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部