期刊文献+

基于指数加权衰减记忆无迹卡尔曼滤波的路面附着系数估计 被引量:8

Estimation of Road Adhesion Coefficient Based on Fading Memory Unscented Kalman Filtering with Exponential Weighting
在线阅读 下载PDF
导出
摘要 针对车辆主动安全控制中路面附着系数这一关键信息,提出一种指数加权衰减记忆无迹卡尔曼滤波(FMUKF)估计算法。该算法在传统无迹卡尔曼滤波(UKF)的基础上,利用衰减记忆滤波来解决由于模型不准确造成的滤波误差过大甚至发散等问题。利用Car Sim和MATLAB/Simulink对算法进行了联合仿真和实车道路试验,并与传统UKF算法的估计结果进行对比分析。结果表明,该算法增强了滤波的稳定性、提高了算法的估计精度,且具有一定的自适应性。 A Fading Memory Unscented Kalman Filtering(FM-UKF) algorithm, which was based on exponential weighting for estimating tire-road adhesion coefficient, was proposed by combining the key information of vehicle active safety control. On the basis of traditional Unscented Kalman Filter (UKF), the fading memory filter was used to solve problems that the filtering error was too farge or even divergent caused by model error. The co-simulation directed at proposed algorithm was conducted with CarSim and MATLAB/Simulink, vehicle road test was carried out under different road conditions, and the results were compared with those Of the traditional UKF algorithm. The results show that the algorithm not only improves the stability of the filtering and improves the estimation accuracy of the algorithm, but also has a certain degree of adaptability.
出处 《汽车技术》 CSCD 北大核心 2018年第1期31-37,共7页 Automobile Technology
基金 高等学校学科创新引智计划项目(B17034)
关键词 车辆动力学 路面附着系数估计 无迹卡尔曼滤波 衰减记忆滤波 指数加权 Vehicle dynamics, Road adhesion coefficient estimation, UKF, Fading memoryfilter, Exponential weighting
  • 相关文献

参考文献5

二级参考文献43

  • 1刘昭度.Mathematical Models of Tire-Longitudinal Road Adhesion and Their Use in the Study of Road Vehicle Dynamics[J].Journal of Beijing Institute of Technology,1996,5(2). 被引量:7
  • 2刘士建,郭立,刘昌进,朱俊株.基于衰减记忆法滤波的多假设跟踪算法[J].信号处理,2004,20(4):346-349. 被引量:1
  • 3施树明,Henk Lupker,Paul Bremmer,Joost Zuurbier.基于模糊逻辑的车辆侧偏角估计方法[J].汽车工程,2005,27(4):426-430. 被引量:29
  • 4VAN ZANTEN A T, ERHARDT R, PFAFF G, et al. Control aspects of the Bosch-VDC[R]. Intemational Symposium on Advanced Vehicle Control, Aachen, Germany, 1996.
  • 5PASTERKAMP W R, PACEJKA H. The tyre as a sensor to estimate friction[J]. Vehicle System Dynamics, 1997, 27: 409-422.
  • 6UCHANSKI M R. Road friction estimation for automobiles using digital signal processing methods[D]. Berkeley: University of California, 2001.
  • 7LEE C, HEDRICK K, YI K. Real-time slip-based estimation of maximum tire road friction coefficient[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(2): 454-458.
  • 8PASTERKAMP W R, PACEJKA H B. The tire as a sensor to estimate friction[J]. Vehicle Systems Dynamics, 1997, 29: 409-422.
  • 9GUSTAFSSON F. Estimation and change detection of tire-road friction using the wheel slip[J]. IEEE Control System Magazine, 1998, 18(4): 4249.
  • 10CANUDAS DE WIT C, TSIOTRAS P. Dynamic tire friction models for vehicle traction[C]//38th IEEE Conference on Decision and Control, Phoenix, USA, 1999:3 746-3 751.

共引文献55

同被引文献51

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部