期刊文献+

面向数字人文的图像语义描述模型研究 被引量:28

Research on Semantic Description Model of Image in Digital Humanities
原文传递
导出
摘要 [目的/意义]数字人文领域中图像包含大量的重要语义信息,是重要的研究对象,然而由于"语义鸿沟"的问题,目前常用的图像自动化标注方法并不适用于这一领域的图像语义描述工作。[方法/过程]提出一种面向数字人文的图像语义描述模型。根据用户认知特征制定图像语义结构化描述框架,并利用多方法组合进行语义特征词抽取与映射。最后,采集中国国家图书馆老照片数据进行实验。[结果/结论]实验结果显示,文章构建的模型在充分符合反映用户认知习惯的同时,对于语义特征词的识别与映射效果较好,有助于解决数字人文环境下图像语义描述问题。 [ Purpose/significance ] In the study of digital humanities, as image contains important semantic information, it becomes an important research subject. However, because of the "semantic gap" problem, the current commonly used image se- mantic annotation automation method is not applicable to image description in the field of digital humanities. [ Method/process] A semantic description model for digital humanities is proposed. According to the cognitive characteristics of users, the semantic struc- ture description framework is established, and the semantic feature words are extracted and mapped by the combination of multiple methods. Finally, an experiment is carried out by collecting the data of an old photo from the National Library of China. [ Result/ conclusion ] The results show that this model can fully reflect users' cognitive habits, at the same time, identifies and maps the se- mantic features of words with better effect, which can help to solve the image semantic description problem in digital humanities en- vironment.
作者 曾子明 周知
出处 《情报理论与实践》 CSSCI 北大核心 2018年第1期116-121,共6页 Information Studies:Theory & Application
基金 国家自然科学基金项目"云环境下智慧图书馆移动视觉搜索模型与实现研究"的成果之一 项目编号:71673203
关键词 数字人文 图像 语义描述 模型设计 digital humanities image semantic description model design
  • 相关文献

参考文献8

二级参考文献92

  • 1徐凤亚,罗振声.文本自动分类中特征权重算法的改进研究[J].计算机工程与应用,2005,41(1):181-184. 被引量:56
  • 2黄果,周竹荣.基于领域本体的概念语义相似度计算研究[J].计算机工程与设计,2007,28(10):2460-2463. 被引量:67
  • 3夏天.汉语词语语义相似度计算研究[J].计算机工程,2007,33(6):191-194. 被引量:63
  • 4化柏林.知识抽取中的停用词处理技术[J].现代图书情报技术,2007(8):48-51. 被引量:39
  • 5Kim S N, Medelyan O, Kan M Y, et al. SemEval-2010 Task 5: Automatic Keyphrase Extraction from Scientific Articles[C]. In: Proceedings of the 5th International Workshop on Semantic Evaluation (SemEval' 10). Stroudsburg: Association for Computational Linguistics, 2010: 21-26.
  • 6Nguyen T D, Kan M. Keyphrase Extraction in Scientific Publications [C]. In: Proceedings of the 10th International Conference on Asian Digital Libraries: Looking Back 10 Years and Forging New Frontiers (ICADL'07). Berlin, Heidelberg: Springer-Verlag, 2007:317-326.
  • 7Kim S N, Kan M. Re-examining Automatic Keyphrase Extraction Approaches in Scientific Articles [C]. In: Proceedings of the Workshop on Multiword Expressions: Identification, Interpretation, Disambiguation and Applications (MWE'09). Stroudsbnrg: Association for Computational Linguistics, 2009: 9-16.
  • 8HaCohen-Kerner Y, Gross Z, Masa A. Automatic Extraction and Learning of Keyphrases from Scientific Articles [C]. In: Proceedings of the 6th International Conference onComputational Linguistics and Intelligent Text Processing (CICLing'05). Berlin,Heidelberg: Springer-Verlag, 2005: 657-669.
  • 9Planta E, Tonelli S. KX: A Flexible System for Keyphrase Extraction [C].ln: Proceedings of the 5th International Workshop on Semantic Evaluation (SemEval' 10). Stroudsburg: Association for Computational Linguistics, 2010: 170-173.
  • 10Alzahrani S, Palade V, Salim N, et al. Using Structural Information and Citation Evidence to Detect Significant Plagiarism Cases in Scientific Publications [J]. Journal of the American Society for Information Science and Technology, 2012, 63(2): 286-312.

共引文献57

同被引文献393

引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部