期刊文献+

云计算下均衡负载的差异性资源调度算法优化 被引量:4

The Optimization of Resource Scheduling Algorithm for Balancing Load under Cloud Computing
在线阅读 下载PDF
导出
摘要 随着云计算的逐渐发展,云计算下容易出现虚拟机负载不均衡和差异性资源调度时间长的问题。当前调度算法大多无法有效解决均衡负载问题,影响调度性能。为此,提出一种新的云计算下均衡负载的差异性资源调度算法,对云计算下资源调度问题进行描述,针对云计算下虚拟机差异性资源负载问题设定参数。设计蚁群优化算法,蚂蚁爬行的每一步代表指派的一个差异性资源任务,引入挥发因子对信息素更新规则进行改进,获取全局信息素。利用蚁群优化算法对云计算下负载的差异性资源进行均衡调度,给出详细实现过程。实验结果表明,所提算法有较好的收敛性,均衡负载效果好,且时间复杂度低。 With the gradual development of cloud computing,it is easy to encounter problems including unbalanced load and long time load for diversity resource scheduling of virtual machine. The current scheduling algorithms are unable to effectively solve the load balancing problem of scheduling performance. Therefore,a differential load balancing was proposed under the new cloud computing resourced scheduling algorithm and resource scheduling problem in cloud computing is described for cloud computing virtual machine resource load difference problem of setting parameters. Ant colony optimization algorithm is designed,and each step of ant crawling represents a differentiated resource task. The ant colony optimization algorithm is used to balance the load of the differential resources under cloud computing. The experimental results show that the proposed algorithm has good convergence,good load balancing effect and low time complexity.
作者 罗南超
出处 《科学技术与工程》 北大核心 2017年第34期86-91,共6页 Science Technology and Engineering
基金 四川省教育厅自然科学重点基金(15ZA0339) 阿坝师范学院校级规划课题(ASB17-04)资助
关键词 云计算 均衡负载 差异性 资源调度 优化 cloud computing load balancing diversity resource scheduling optimization
  • 相关文献

参考文献12

二级参考文献113

  • 1段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:214
  • 2Silva M,Morais H,Vale Z.An integrated approach for distributed energy resource short-term scheduling in smart grids considering realistic power system simulation.Energy Conversion and Management,2012,64(3):273-288.
  • 3Young C L,Albert Y Z.Energy efficient utilization of resources in cloud computing systems.Journal of Supercomputing,2012,60(4):268-280.
  • 4Jayant B,Robert W A,Kerry H,et al.Green cloud computing:balancing energy in processing.Storage and Transport,2011,99(1):149-167.
  • 5Rajni L,Inderveer C.Bacterial foraging based hyper-heuristic for resource scheduling in grid computing.Future Generation Computer Systems,2013,29(1):751-762.
  • 6Lien D,Bert V.Efficient resource management for virtual desktop cloud computing.Journal of Supercomputing,2012,62(1):741-767.
  • 7Dzmitry K,Pascal B,Samee U K.Green cloud:a packet-level simulator of energy-aware cloud computing data centers.Journal of Supercomputing,2012,62(1):1263-1283.
  • 8Anton B,Jemal A,Rajkumar B.Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing.Future Generation Computer Systems,2012,28(1):755-768.
  • 9Michael C,Aameek S.Exploiting spatio-temporal tradeoffs for energy-aware MapReduce in the cloud.IEEE transactions on computers,2012,61(12):1731-1751.
  • 10Ivan R,Hariharasudhan V,Eun K L,et al.Energy-efficient thermal-aware autonomic management of virtualized HPC cloud infrastructure.Journal of Grid Computing,2012,10(1):447473.

共引文献141

同被引文献31

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部