期刊文献+

基于熵权的多粒度犹豫模糊语言VIKOR群推荐方法 被引量:17

Multi-granular hesitant fuzzy linguistic term sets and their application in group recommendation based on entropy measure and VIKOR method
原文传递
导出
摘要 针对群推荐系统中被推荐项目具有多粒度性、犹豫性、模糊性的特点,首先在多粒度犹豫模糊语言术语集的基础上,提出多粒度犹豫模糊语言熵的概念及计算公式,采用熵的计算公式求解被推荐项目的属性权重;然后,将传统的多准则妥协解排序法(VIKOR)拓展到多粒度犹豫模糊领域,并对其妥协解公式加以改进,将改进的VIKOR方法用于群推荐;最后,从理论分析、数值计算和敏感性分析3个方面将改进的VIKOR方法与逼近理想解排序法(TOPSIS)进行对比,所得结果表明了所提出方法在群推荐应用中的合理性和有效性. According to the characteristics of recommended items in a group recommendation system, i.e.,multi-granularity, hesitantcy, fuzziness, firstly, based on the concept of multi-granular hesitant fuzzy linguistic term sets(MHFLTSs), the concept and calculation formula of the multi granularity hesitant fuzzy linguistic entropy are defined, and the attributes of recommended items can be calculated by using MHFLTSs' entropy measures. Then, the traditional VIKOR method is extended to the multi-granularity fuzzy domain, and the compromise solution formula is improved. The improved VIKOR method is applied to the group recommendation. Finally, the VIKOR method and TOPSIS method are compared from three aspects of theoretical analysis, numerical calculation and sensitivity analysis.The results show that the proposed method is reasonable and effective in the application of group recommendation.
出处 《控制与决策》 EI CSCD 北大核心 2018年第1期111-118,共8页 Control and Decision
基金 国家自然科学基金重大项目(71490725) 国家自然科学基金项目(71371062) 国家973计划项目(2013CB329603) 安徽省教育厅重点自然科学项目(KJ2015A300)
关键词 多粒度犹豫模糊语言术语集 VIKOR方法 群推荐方法 熵权法 multi-granular hesitant fuzzy linguistic term sets VIKOR method group recommendation methods entropy measure
  • 相关文献

参考文献3

二级参考文献37

  • 1Baltrunas L, Makcinskas T, Ricci F. Group recommendations with rank aggregation and collaborative filter- ing[C]// Proceedings of the Fourth ACM Conference on Recommender Systems, ACM, 2010: 119-126.
  • 2Pera M S, Ng Y K. A group recommender for movies based on content similarity and popularity[J]. Information Processing & Management, 2013, 49(3): 673-687.
  • 3Ortega F, Bobadilla J, Hernando A, et al. Incorporating group recommendations to recommender systems: Alternatives and performance[J]. Information Processing & Management, 2013, 49(4): 895 901.
  • 4Gorla J, Lathia N, Robertson S, et al. Probabilistic group recommendation via information matching[C]//Pro- ceedings of the 22nd International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2013:495 504.
  • 5Christensen I, Schiaffino S. A hybrid approach for group profiling in recommender systems[J]. Journal of Universal Computer Science, 2014, 20(4): 507-533.
  • 6Agudo B D, Watson I. A case-based solution to the cold-start problem in group recommenders[C]// The Inter- national Conference on Case-based Reasoning, 2012, LNCS 7466: 342-356.
  • 7Martinez L, Barranco M J, Perez L G, et al. A knowledge based recommender system with multi-granular linguistic information[J]. International Journal of Computational Intelligence Systems, 2008, 1(3): 225-236.
  • 8Adomavicius G, Kwon Y O. New recommendation techniques for multi-criteria rating systems[J]. IEEE Intelligent Systems, 2007, 22(3): 48-55.
  • 9Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 10Manouselis N, Costopoulou C. Analysis and classification of multi-criteria recommender systems[J]. World Wide Web, 2007, 10(4): 415 441.

共引文献118

同被引文献136

引证文献17

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部