期刊文献+

基于梯度双面互补特性的级联快速目标检测

The Cascaded Rapid Object Detection with Double-Sided Complementary in Gradients
在线阅读 下载PDF
导出
摘要 针对目标检测中精度和速度难以兼顾的问题,借助视觉注意理论中的目标感知与识别机制,分析目标描述中梯度幅值与梯度方向信息之间具有的互补性,提出了基于两层级联梯度特征的快速目标检测模型,可有效描述类无关和类相关检测器.一方面,采用梯度幅值特征,从滑动窗口采样中获得候选目标提议,大幅降低了验证窗口的数量,确保检测速度,另一方面,利用级联方式学习训练多个子检测器,可更好实现不同尺度变化下的目标检测精度.PASCAL数据集上的实验结果,解释了级联梯度特征对目标结构描述的有效性,表明了该文方法在与现有先进方法的检测精度相当的前提下,可极大提升检测速度. To address the dilemma of trade-off between efficiency and accuracy for object detection,based on the mechanism of object perception and recognition in visual attention theory,the two sides derived from gradient feature as magnitude and direction have been revisited to manifest their complementary characteristics. The newrapid object detection model based on two-layer cascade with gradients is motivated,making two types of category-independent and category-dependent detectors efficiently described. On the one hand,gradient magnitude can be used to generate the efficient object proposal in clutter from sliding windowsamples which guarantees the significant decrease on the number of windows for candidate and speeds up detection. On the other hand,the cascade-architecture in form of multiple sub-detectors can well adapt to the varying scales of different objects resulting in boost of accuracy. Experimental performance in PASCAL presents the effectiveness of cascade structure for gradient features,and demonstrates that our model can dramatically speed up the detection with the advantages of comparable accuracy against the state-of-the-art.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第10期2362-2367,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61273237 No.61503111)
关键词 目标检测 类无关和类相关 梯度特征 级联结构 互补性 object detection category-independent and category-dependent gradient featurr cascade stmcturr complementarity
  • 相关文献

参考文献3

二级参考文献44

  • 1刘鹏,张岩,毛志刚.一种脉冲噪声图像复原算法[J].计算机研究与发展,2006,43(11):1939-1946. 被引量:4
  • 2Ivanov V K. On linear ill-posed problems [J]. Dokl Akad Nauk SSSR, 1962, 14(145): 270-272.
  • 3Phillips D L. A technique for the numerical solution of certain integral equations of the first kind [J]. Journal of the ACM, 1962, 9(1): 84-97.
  • 4Tikhonov A N. On the Solution of Ill-posed Problems and the Method of Regularization [M]. Providence: American Mathematical Society Press, 1963:1035-1038.
  • 5Pace D, Aylward S, NJethammer M. A locally adaptive regularization based on anisotropie diffusion for deformable image registration of sliding organs [J]. IEEE Trans on Medical Imaging, 2013, 32(11): 2114-2126.
  • 6Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D: Nonlinear Phenomena, 1992, 80(1): 259-268.
  • 7Marquina A, Osher S. Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal [J]. SIAM Journal of Scientific Computing, 2000, 2(22): 387-405.
  • 8Levin A, Fergus R, Durand F, et al. Image and depth from a conventional camera with a coded aperture [J]. ACM Trans on Graphics, 2007, 26(3): 701-709.
  • 9Levin A. Blind motion deblurring using image statistics [C] //Proc of the 20th Annual Conf on Neural Information Processing Systems. Cambridge, CM: MIT, 2006:841-848.
  • 10Shah Q, Jia J, Agarwala A. High-quality motion deblurring from a single image [J]. ACM Trans on Graphics, 2008, 27 (3) : 73-83.

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部