期刊文献+

基于多特征融合和BP-AdaBoost算法的列车关键零件故障自动识别 被引量:9

Automatic Fault Recognition for Key Parts of Train Based on Multi-feature Fusion and BP-AdaBoost Algorithm
在线阅读 下载PDF
导出
摘要 针对列车集尘器和安全链锁紧螺栓的故障检测,提出了一种基于多特征融合和BP-AdaBoost的故障自动识别算法。首先提取故障区域与非故障区域的局部二进制模式(LBP)、方向梯度直方图(HOG)和Haar-like三类特征;其次利用主成分分析(PCA)定义不同特征对故障识别准确率的贡献值,并据此对这三种特征进行降维和融合;再次利用融合特征来训练BP-AdaBoost分类器;最后用训练好的分类器结合不同的识别算法,对集尘器和安全链锁紧螺栓的故障进行定位和识别。实验结果表明,该算法能较好地识别两种不同故障,故障识别率高,误检率和漏检率低,对于光照不均和遮挡情况有一定的鲁棒性。 An automatic fault recognition method was proposed for the fault detection of the fastening bolts and dust collectors based on multi-feature fusion and BP-AdaBoost algorithm.Firstly,the local binary pattern(LBP),histogram of oriented gradient(HOG)and Haar-like features of the faulty and non-faulty areas were extracted.Then,the principal component analysis(PCA)was used to define the contribution of different features to the fault recognition accuracy,the three features metioned above were fused,and the dimensionality reduction was conducted to the fusion feature.Then the BP-AdaBoost classifier was trained by the fusion features.Finally,the trained classifier and the recognition algorithm were used to detect the dust collector and fastening bolt faults.The experimental results show that the algorithm may adapt to the recognition of two different faults.High recognition accuracy rate,low false ratios and low omission ratios are obtained,and the algorithm is robust to light unevenness and occlusion.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2017年第21期2588-2594,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51775177 51205115)
关键词 集尘器 安全链锁紧螺栓 特征融合 BP-AdaBoost算法 dust collector fastening bolt feature fusion BP-AdaBoost algorithm
  • 相关文献

参考文献9

二级参考文献88

  • 1崔峰,汪雪林,彭思龙.近似欧氏距离变换的一种并行算法[J].中国图象图形学报(A辑),2004,9(6):693-698. 被引量:9
  • 2刘瑞扬.货车运行故障动态图像检测系统(TFDS)的原理与应用[J].中国铁路,2005(5):26-27. 被引量:18
  • 3康文静,丁雪梅,崔继文,敖磊.基于改进Hough变换的直线图形快速提取算法[J].光电工程,2007,34(3):105-108. 被引量:36
  • 4Zhong C, Sun Z, Tan T. Fuzzy 3D face ethnicity cate-gorization[M]. Berlin.- springer, 2009:386-393.
  • 5Shakhnarovich G, Viola PA, Moghaddam B, et al. A u- nified learning framework for real time face detection and classification[C]//Proceedings of the fifth International Conference on Automatic Face and Gesture Recognition. Washington, DC,USA.. IEEE, 2002 : 16--23.
  • 6LJ Yin, JR Jia, Morrissey J. Towards race--related face identification., research on skin color transfer[C]// Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition. Seoul, Ko rea.. IEEE, 2004 : 362- 368.
  • 7Gutta S,Jeffrey R J, Huang P, et al. Mixture of experts for classification of gender, ethnic origin and pose of hu man faces[J]. IEEE trans on neural networks, 2000, 11, (4) :948-960.
  • 8Duan Xiaodong, Wang Cunruil, Liu Xiangdong. Ethnic features extraction and recognition of human faces[C]// IEEE International Conference on Advanced Computer Control. Shenyang: IEEE, 2010.
  • 9Paul Viola, Michael Jones. Rapid object detection uses a boosted cascade of simple features[J]. Computer Vision and Pattern Recognition, Kauai, Hawaii, 2001(1) : 511 -518.
  • 10Papageorgiou C P, Oren M, Poggio T. A general framework for object detection[C]//Proceedings of the International Conference on Computer Vision. Bombay.. IEEE, 1998:555-562.

共引文献78

同被引文献62

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部