期刊文献+

基于二维信息熵的红外小目标检测算法研究

Infrared Target Detection Based on Two-dimensional Entropy
在线阅读 下载PDF
导出
摘要 由于多种因素的影响,红外小目标容易淹没在背景中,日趋复杂的背景以及隐身技术的应用,给红外小目标的检测带来极大的困难。分析天空背景下的红外图像特征,针对红外目标、天空背景和噪声各自不同的特点,结合二维信息熵,基于聚类思想构造属性集,依据属性集进行目标检测,然后根据噪声和目标点的特征,对检测结果中的孤立噪声点进行剔除,最终检测出小目标。仿真实验结果表明:该算法较二维最大熵算法,能够有效地提取出目标,与二维灰度级-邻域灰度级绝对差直方图法相比,计算简单方便,缩短运行时间。 Due to many factors, small infrared targets easily drown in the background. Additionally, increasingly complex backgrounds and stealth technology applications create abundant difficulties for infrared target detection. Infrared images are analyzed from the characteristics of sky background, noise and target, and two-dimensional information entropy. This is combined with a clustering structure attribute set, and the isolated noise points are then removed, pemoise and target point characteristics of the test results. Finally, the small target is detected. Simulation results show that, compared with the two-dimensional Maximum Entropy algorithm, the proposed algorithm can effectively find the target. Compared with the two-dimensional gray-scale neighborhood gray-level histogram method, calculation is simple and convenient, and requires a short running time.
作者 王标
机构地区 [
出处 《红外技术》 CSCD 北大核心 2017年第10期936-939,共4页 Infrared Technology
关键词 信息熵 红外小目标 属性集 信噪比 entropy, infrared small target, attribute set, SNR
  • 相关文献

参考文献12

二级参考文献119

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部