期刊文献+

基于差分进化算法优化多因素灰色模型的异丙酚血药浓度预测

Using multi-variable grey model optimized by differential evolution algorithm to forecast plasma concentration of propofol
原文传递
导出
摘要 针对短效静脉麻醉药物异丙酚在药物代谢过程中存在强时变性、复杂非线性等特点,以及传统的群体药代非线性混合效应法在建模方法中存在工作繁杂、人为因素多等缺陷,本研究利用差分进化算法优化多因素时序灰色模型,建立基于灰色理论的异丙酚药代血药浓度预测模型,并与非线性混合效应建模法(nonlinear mixed effects modeling,NONMEM)预测效果进行比较。结果显示,差分进化-多变量灰色模型(DE-MGM)的预测结果的偏离性(MDPE)为-4.6%,NONMEM为-12.13%;DE-MGM的预测结果的精确度(MDAPE)为13.19%,NONMEM为23.12%。基于差分进化优化多因素灰色模型能稳定预测异丙酚血药浓度,且准确度高。该方法原理简单,实现便捷,可适用于异丙酚等短效静脉麻醉药物的群体药代药效学研究和分析。 Due to the characteristics of propofol of high time-varying, and complex compartment model, the traditional method of nonlinear mixed effects modeling(NONMEM) has miscellaneous of variables and plenty of artificial factors in the estimation of propofol. This study was aimed to build a propofol prediction model based on the differential evolution(DE) algorithm and grey model. DE was used to optimize the parameter of multi-variable grey model(MGM) and to build a model of prediction of the plasma concentration of propofol based on the grey model. It was compared with the results of NONMEM algorithm. In conclusion, the median performance error(MDPE) of DE-MGM was-4.6%, while the result of NONMEM is-12.13%. The median absolute performance error(MDAPE) of GA-BP neural network is 13.19%, while that of NONMEM is 23.12%. The experimental results suggest that the new method is suitable to determine the short half-life of anesthesia drug propofol with higher accuracy.
作者 李龙艳 曹扬 潘克家 LI Long-yan CAO Yang PAN Ke-jia(Department of Anesthesiology Center of Medical Engineering, Xiangya Hospital, Central South University, Changsha 410008, China School of Mathematics and Statistics, Central South University, Changsha 410083, China)
出处 《药学学报》 CAS CSCD 北大核心 2017年第10期1599-1604,共6页 Acta Pharmaceutica Sinica
基金 国家自然科学青年基金资助项目(81601728)
关键词 差分进化算法 多因素灰色模型 异丙酚 血药浓度 differential evolution algorithm multi-variable grey model propofol plasma concentration
  • 相关文献

参考文献4

二级参考文献94

  • 1何元胜,何敏,李杰仁.电磁层析成像图像重建算法[J].电气技术,2007,8(4):43-48. 被引量:2
  • 2宋立明,李军,丰镇平.ARDE算法及其在三维叶栅气动优化设计中的应用[J].工程热物理学报,2005,26(2):221-224. 被引量:5
  • 3王丰效.多变量非等间距GM(1,m)模型及其应用[J].系统工程与电子技术,2007,29(3):388-390. 被引量:31
  • 4Cao J X,He Z H,Zhu J S,et al.Conductivity tomography at two frequencies[J].Geophysics,2003,68(2):516-522.
  • 5Storn R,Price K.Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces[J].J.Glob.Optim,1997,11:341-359.
  • 6Harry Eckel,aus Kassel.Numerical study of an evolutionary algorithm for electrical impedance tomography[D].der Georg-August Universitat Gottingen,2007.
  • 7Holland J.H.Genetic Algorithm[J].Science.1992,11:24-31.
  • 8Gamperle R,Dmuller S,Koumoutsakos P.A parameter study for differential evolution[A].International conference on advances in intelligent systems,Fuzzy systems,Evolutionary Computation[C].2002:293-298.
  • 9Onwubolu G C,Davendra D.Differential evolution:A handbook for global permutation-based combinatorial optimization[M].Springer,2008.
  • 10Josef Tvrdik.Adaptation in differential evolution:A numerical comparison[J].Applied Soft Computing,2009,9:1149-1155.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部