摘要
在现有DOA估计的方法中,加权子空间拟合(WSF)具有很高分辨率.但是求解WSF算子的算法计算复杂度较高,无法满足实时性需求.为了降低计算复杂度,本文针对WSF算法提出了一种低复杂度的联合粒子群算法.首先利用旋转不变子空间法(ESPRIT)可以显式计算DOA结果,计算复杂度极低的特点,并联合利用克拉美-罗界来确定一个新的搜索空间,再随机撒入少量粒子进行粒子群算法,最后在满足一定的速度条件后跳出迭代.此外,本文也讨论了粒子群算法的惯性因子.试验结果表明,跟常规粒子群算法比较,在保持DOA估计精度不变的结果下,本文算法所需粒子数和迭代次数大幅度降低,计算复杂度也明显降低.
Among existing DOA estimation methods, the Weighted Subspace Fitting (WSF) algorithm is well-known for its high resolution of DOA estimation. However, its computational complexity is extremely high and cannot meet the real- time requirements. In this paper, we propose a Joint-PSO algorithm for WSF with less complexity. This algorithm has the following key steps: firstly we use the solution of Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) which can get the DOA estimation with extremely low complexity and stochastic Cramer-Rao bound (CRB) to determine a novel initialization space in the whole search space. Then, we randomly initiate a small number of particle in that small area. Finally, we let the particles "fly" to the solution with a suitable speed. Additionally, we also discuss and optimize the inertia factor of PSO algorithm. The simulation results find that for the same Root-Mean-Square-Error (RMSE), the particles and iteration number of the proposed algorithm are much less than that of the original PSO algorithm. As a result, the computational complexity can be greatly reduced.
出处
《计算机系统应用》
2017年第8期162-167,共6页
Computer Systems & Applications
基金
山东省自然科学基金面向项目(ZR2014FM017)
青岛市科技创新计划(15-9-80-jch)
青岛市黄岛区科技创新计划(2014-1-45)
中央高校研究基金(15CX02047A
15CX05025A)
关键词
波达方向估计
加权子空间拟合算法
粒子群算法
计算复杂度
direction-of-arrival
weighted subspace fitting algorithm
particle swarm optimization
computational complexity