期刊文献+

去产能背景下煤炭价格走势及预测分析——基于ARIMA模型的研究 被引量:12

Research on Trend and Forecast of Coal Prices under Capacity Reduction Based on ARIMA Model
原文传递
导出
摘要 煤炭价格不仅反映煤炭市场供需关系,更是相关利益主体的决策依据。受去产能的影响,我国煤炭价格自2012年开始持续性下跌后于2016年出现强劲反弹。本文首先分析了去产能背景下我国煤炭价格走势,然后选取2010-2016年的环渤海5500K动力煤周价格为样本数据,在分析样本数据变化特征的基础上,建立ARIMA模型对煤炭价格进行短期预测分析。结果表明该模型具有良好的拟合效果,且预测煤炭价格将在2017年上半年持续下跌而在下半年缓慢增长,该研究结论对于决策者预测煤炭价格未来走势和制定决策具有较大运用价值。 Coal prices not only reflect the coal market supply and demand, but also the basis of decision-making for relevant stakeholders. Affected by capacity reduction in 2016, China's coal prices start to rebound strongly after a continued decline since the beginning of 2012. This paper first analyzes the trend of coal prices under capacity reduction, and then selects the price of 5500K coal for the Bohai Sea from 2010 to 2016 as the sample data. Based on the analysis of the characteristics of the change of the sample data, ARIMA model is established to couduct the short - term forecast analysis to the coal prices. The results show that the model has a good fitting effect and predict coal prices coal prices will continue to fall in the first half of 2017 but grow slowly in the second half of the year. Therefore, the conclusion of this study is of great value to the decision makers to forecast the future trend of coal prices and make decision.
出处 《价格理论与实践》 CSSCI 北大核心 2017年第5期73-76,共4页 Price:Theory & Practice
关键词 煤炭价格 煤炭去产能 ARIMA模型 煤炭市场预测 供给侧结构性改革 Coal prices Coal production capacity ARIMA model Coal market forecast The structural reform of supply-side
  • 相关文献

参考文献6

二级参考文献32

  • 1岳福斌.煤炭成本构成存在的问题及解决思路[J].宏观经济研究,2007(3):49-57. 被引量:38
  • 2李明,吕绪华.煤炭价格预测模型及其应用[J].武汉科技大学学报,2007,30(4):434-437. 被引量:11
  • 3詹姆斯.汉密尔顿.时间序列分析[M].北京:中国社会科学出版社,1999.
  • 4Peter J.Broclwell,Richard A.Davis,田铮译,时间序列的理论与方法[M].北京:高等教育出版社,2004
  • 5中国经济年鉴 (1996-2006)[M].北京:中国经济年鉴出版社,1996-2006
  • 6国网能源研究院,中能电力工业燃料公司.全国电煤供需形势分析月报[R],2013.
  • 7Anastasakis L,Mort N.The development of self organization techniques in modeling:A review of the group method of data handling(GMDH)[EB/OL].http://www.Shef.ac.uk/content/1/c6/03/23/48/813.pdf,2001.
  • 8Hansen L K,Salamon P.Neural network ensemble[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(10):993-1001.
  • 9Zhou Z H,Wu J X,Tang W.Ensembling neural networks:Many could be better than all[J].Artificial Intelligence,2002,137(1/2):239-263.
  • 10周志华.选择性集成[EB/OL].http://wenku.about:blank.com/view/bSdf974d767fSacfalc7cdcS.html.

共引文献68

同被引文献159

引证文献12

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部