期刊文献+

散乱点云的边界提取 被引量:15

Boundary Extraction of Scattered Point Cloud
在线阅读 下载PDF
导出
摘要 基于Kinect体感技术获取的周围环境点云数据量大,其中点云的边界是重要特征,是机器人导航的重要参数。为获得复杂散乱点云的边界特征,提出了一种基于点云库(PCL)的物体分割以及边缘轮廓提取算法。该算法通过建立散乱点云的kd-tree空间拓扑结构,经直通滤波、表面平滑处理对点云数据进行去噪、填补空洞。由于实际环境包含大量的平面,因此采用基于随机采样算法(RANSAC)可寻找种子点确定平面,进而应用平面分割找出平面上的感兴趣区域,并计算k邻域点的法线夹角,若大于阈值则为边界特征点。为验证算法的有效性,基于机器人操作系统(ROS),通过PCL点云库,快速、准确地对场景中的物体进行分割以及边缘轮廓提取。实验结果表明,所提出的算法能够快速、准确、有效地提取散乱点云的边界。 The data of the surrounding environment point cloud obtained by Kinect somatosensory technology is large, and the boundary of the point cloud is an important feature and parameter for robot navigation. A method of an object segmentation and edge contour ex- traction based on Point Cloud Library (PCL) has been proposed to obtain the boundary feature of complex scattered cloud. By establis- hing the kd-tree space topology structure of scattered points cloud, the point cloud data have been denoised and filled with holes by pass -through filtering and surface smoothing. The real environment contains a large number of planes, thus the random sampling algorithm (RANSAC) has been employed to find the seed point for determination of the plane used to find the region of interest on the plane. Whether the point is the boundary point is judged by the maximum value of angle difference which has been calculated by the normal di- rection with the k -nearest points. The experiment of object segmentation and edge contour extraction with the PCL in the ROS ( Robot Operating System) environment have been performed rapidly and precisely. The experimental results show that this proposed method has quickly, accurately and effectively obtained the boundary of scattered point cloud.
出处 《计算机技术与发展》 2017年第7期83-86,共4页 Computer Technology and Development
基金 天津市科技支撑计划项目(13ZCZDGX01200) 天津市产学研合作项目(14ZCZDSF00025) 天津市863成果转化项目(13RCHZGX01116 14RCHZGX00862)
关键词 散乱点云 KD-TREE 边界特征提取 分割 Scattered point cloud kd-tree boundary characteristic extraction segmentation
  • 相关文献

参考文献4

二级参考文献53

  • 1杜培林,屠长河,王文平.点云模型上测地线的计算[J].计算机辅助设计与图形学学报,2006,18(3):438-442. 被引量:14
  • 2王丽青,陈正阳,陈树强,陈学工.一个改进的简单多边形凸包算法[J].计算机工程,2007,33(3):200-201. 被引量:17
  • 3周培德.计算几何[M].北京:清华大学出版社,2001..
  • 4DORAI C,JAIN A.COSMOS-A representation scheme for 3D f ree-form objects[J].IEEE Trans on Pattern Anal Machine Intell,1997,19(10):1115-1130.
  • 5ZHANG Z.Iterative point matching for registration of free-form curves and surfaces[J].Internat J Comput Vision,1994,13(2):119–152.
  • 6Ohio State University.OSU Range image database[DB/OL].[2008-02-07].http://sampl.ece.ohio2state.edu/data/3DDB/RID/minolta/.
  • 7JOHNSON A,HEBERT M.Using spin images for efficient object recognition in cluttered 3D scenes[J].IEEE Trans on Pattern Anal Machine Intell,1999,21(5):433-449.
  • 8MIAN A S,BENNAMOUN M,OWENS R A.A novel representation and feature matching algorithm for automatic pair-wise registration of range images[J].International Journal of Computer V ision,2006,66(1):19-40.
  • 9CAMPBELL R J,FLYNN P J.A survey of free-form object representation and recognition techniques[J].Computer Vision and Image Understanding,2001,81(2):166-210..
  • 10FLYNN P,JAIN A.On reliable curvature estimation[C].IEEE Conference on Computer Vision and Pattern Recognition,New York,1989:110-116.

共引文献53

同被引文献101

引证文献15

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部