期刊文献+

基于改进的量子粒子群算法的脱硝系统线性参数变化模型辨识 被引量:6

Identification of LPV model for denitrification system using improved QPSO algorithm
在线阅读 下载PDF
导出
摘要 燃煤电厂脱硝控制系统的调节品质对发电机组的经济性和环保性有重要的意义。本文研究了以机组负荷为时变量的脱硝系统线性参数变化(LPV)模型辨识方法。通过机组的运行历史数据进行系统辨识,得到能够描述全局动态特性的LPV模型,并采用量子粒子群优化算法进行高维参数的优化。在进化过程中引入加速度因子,提高算法的优化效率,使优化结果更逼近最优值,通过标准测试函数仿真实验验证了算法的高效性。并将该算法应用于某电厂600 MW机组的喷氨脱硝系统建模中,辨识结果表明建立的数学模型有效可行。 The regulation quality of boiler denitrification system control has great significance for unit safety and economy operation. On the basis of the time-varying parameters of the unit load, this article presents the denitrification system's nonlinear model identification method. The linear parameter time-varying (LPV) model was established by the historical data, which can reflect the global dynamic properties of the object. Moreover, to optimize the high-dimensional parameters, the evolutionary acceleration factor was added into the quantum particle swarm optimization algorithm. The modified algorithm's optimization efficiency was improved, and the optimization effect was more close to the optimal value. The high efficiency of this algorithm was verified through high-dimensional standard function test. Finally, this solution was applied to the denitrification control system modeling of a 600 MW unit, the identification results show that the denitrification conversion model is valid, and the program is feasible.
作者 袁世通 YUAN Shitong(Datang Central-China Electrie Power Test Research Institute, Zhengzhou 450000, Chin)
出处 《热力发电》 CAS 北大核心 2017年第6期94-100,共7页 Thermal Power Generation
关键词 燃煤电厂 脱硝系统 建模 网络化LPV模型 G-QPSO算法 历史数据 辨识 coal-fired power plant, denitration system, modeling, networked LPV model, G-QPSO algorithm, historical data, identification
  • 相关文献

参考文献7

二级参考文献96

共引文献218

同被引文献61

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部