期刊文献+

基于自适应度量学习的行人再识别

Pedestrian Re-recognition Based on Adaptive Metric Learning
在线阅读 下载PDF
导出
摘要 该文提出了基于自适应度量学习(AML)的行人再识别方法。与正常处理所有负样本的常规度量学习方法不同的是,AML将负样本自适应地分为三组,并对它们给予不同的关注。通过加强负样本的影响,AML可以更好地挖掘正样本和负样本之间的辨别信息,从而生成更有效的度量。此外,我们还提出了探针特定重新排名(PSR)算法来改进由度量学习得到的初始排名列表。对于每个探针,PSR构建相应的超图以捕获探针和其排名前100的图库图像之间的邻域关系。然后基于它们在超图中的邻域亲和力来重新排列这些图像。其中对公共数据集VIPeR数据集的实验证明了AML和PSR的良好的鲁棒性和优越性。 This paper presents a pedestrian re-recognition method based on adaptive metric learning(AML). Unlike conventionalmeasurement methods that normally handle all negative samples, AML adaptively divides negative samples into three groups andgives them different concerns. By enhancing the impact of negative samples, AML can better exploit the identification informationbetween positive and negative samples, resulting in more efficient measures. In addition, we propose a probe-specific re-rank(PSR) algorithm to improve the initial ranking list obtained from metric learning. For each probe, the PSR constructs a correspond-ing hypergraph to capture the neighborhood relationship between the probe and its top 100 library image. These images are then re-arranged based on their neighborhood affinity in the hypergraph. The experiment of the VIPeR dataset of the public data set provesthe good robustness and superiority of AML and PSR.
作者 詹敏 王佳斌 邹小波 ZHAN Min,WANG Jia-bin,ZOU Xiao-bo(College of Technology,Huaqiao University,Quanzhou 361021, C hina )
机构地区 华侨大学工学院
出处 《电脑知识与技术》 2017年第4期159-161,164,共4页 Computer Knowledge and Technology
基金 华侨大学研究生科研创新能力培育计划资助项目(No.1511422006) 国家自然科学基金青年科学基金项目(No.61505059)
关键词 行人再识别 自适应度量学习 负样本 探针特定重新排名 pedestrian re-recognition AML negative samples PSR
  • 相关文献

参考文献7

二级参考文献100

  • 1庄严,战洪斌,王伟,王珂.基于加权颜色直方图和粒子滤波的彩色物体跟踪[J].控制与决策,2006,21(8):868-872. 被引量:20
  • 2查宇飞,毕笃彦.一种基于粒子滤波的自适应运动目标跟踪方法[J].电子与信息学报,2007,29(1):92-95. 被引量:19
  • 3Grenander U,Chow Y,Keenan D M.A pattern theoretical study of biological Shapes[M].New York : Springer-Verlag, 1991.
  • 4Isard M,Blake A.CONDENSATION-conditional density propagation for visual tracking[J].International Journal of Computer Vision, 1998,29 (1):5-28.
  • 5Isard M,Blake A.ICONDENSATION:unifying low-level and high- level tracking in a stochastic framework[C]//European Conference on Computer Vision, 1998,1 : 893-908.
  • 6Nummiaro K,Koller-Meier E,van Gool L.An adaptive color based particle filter[J].hnage and Vision Computing, 2003,21 ( 1 ) : 99 - 110.
  • 7Kailath T.The divergence and bhattacharyya distance measures in signal seleetion[J].IEEE Transactions on Communication Technology, 1967,15 ( 1 ) : 52-60.
  • 8Blake A,Curwen R,Zissennan A.A frame work for spatio-temporal control in the tracking of visual contours[J].Int Journal of Computer Vision, 1993,11 (2) : 127-145.
  • 9Blake A,Isard M,Reynard D.Learning to track the visual motion of contours[J].Artificial Intelligence, 1995,78 : 101-134.
  • 10Hager G, Belhumeur P. Efficient region tracking with parametric models of geometry and illumination[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence ,1998,20(10):1025 - 1039.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部