期刊文献+

基于模糊神经模型的语言主观性检测 被引量:1

Opinion detection based on neuro-fuzzy model
在线阅读 下载PDF
导出
摘要 针对文本主观性分析性能不足问题,提出了一种句子级主观情感提取的模糊神经模型。该模型利用不借助词法分析的特征选择方法抽取情感特征,通过对神经网络的输入模糊化操作,从而实现了句子级的主观性检测。通过在多个数据集上的测试表明,该方法具有较高的主观性检测准确率,是一种可靠的情感分析方法,对跨语言的主观性分析有明显意义。 Aiming at the low performance problem in sentiment analysis related fields, this paper proposed a neuro-fuzzy model-based opinion detection method. The novel model firstly used a lexical-knowledge-free strategy to achieve language independent feature selection. Secondly,it used a fuzzy theory based neural network method, implemented the sentence level subjectivity detection. Experimental results on several datasets reveal that the method has ideal precision in opinion detection. It is a outstanding opinion detection method and has significance in cross language sentiment analysis.
出处 《计算机应用研究》 CSCD 北大核心 2017年第6期1647-1649,共3页 Application Research of Computers
基金 2015年度国家社科基金一般项目(15BXW042) 国家档案局2014年科技基金项目(2014-X-65) 四川文理学院智能计算与物联网工程技术中心资助项目
关键词 情感分析 主观性检测 模糊集 神经网络 特征选择 sentiment analysis opinion detection fuzzy set neural networks feature selection
  • 相关文献

参考文献3

二级参考文献12

  • 1姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78
  • 2Liu B, Zhang L. A survey on opinion mining and sentiment analysis // Mining text data. New York: Springer, 2012:415-463.
  • 3Taboada M, Brooke J, Tofiloski M, et al. Lexicon-based methods for sentiment analysis. Computational Linguistics, 2011, 37(2): 267-307.
  • 4Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. Journal of Machine Leanming Research, 2003(3): 993-1022.
  • 5Titov I, McDonald R. Modeling online reviews with multi-grain topic models // Proceeding of WWW'08. New York: ACM, 2008:111-120.
  • 6Titov I, McDonald R. A joint model of text and aspect ratings for sentiment summarization//Proceedings of ACL-08: HLT. Stroudsburg: ACL, 2008:308-316.
  • 7Zhao X, Jiang J, Yan H F, et al. Jointly modeling aspects and opinions with a MaxEnt-LDA hybrid // Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Strouds- burg: ACL, 2010:56-65.
  • 8Brody S, Elhadad N. An unsupervised aspect- sentiment model for online reviews//Proceedings of the 2010 Annual Conference of the North American Chapter of the ACL. Stroudsburg: ACL, 2010: 804-812.
  • 9Jo Y, Oh A. Aspect and sentiment unification mode for online review analysis // Proceedings of the 4th ACM International conference on Web search and data mining. New York: ACM, 2011 : 815-824.
  • 10Lin C H, He Y L. Joint sentiment/topic model for sentiment analysis // Proceeding of the 18th ACM conference on Information and knowledge mana- gement. New York: ACM, 2009:375-384.

共引文献181

同被引文献22

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部