期刊文献+

产融结合模式的演化路径研究——以GE、联想控股为例 被引量:5

Research on the Evolutionary Path of Industry-Finance Integration Mode——Taking GE and Lenovo Holdings as Examples
在线阅读 下载PDF
导出
摘要 随着国内外企业产融结合发展的深入,产融结合模式演化问题已经成为产融结合研究的重点之一。本文依据国内外企业产融结合实践,对产融结合模式的演化历程进行了分析和总结,并基于商业模式冰山理论与资源基础理论,将产融结合的隐性知识概括为3个维度:社会关系网络、协作机制和科技水平。结合美国通用电气公司(GE)、联想控股的产融实践,本文分析了国内外企业产融结合模式与外部环境的匹配性,并基于这两个案例的产融结合模式对比,特别是在隐性知识方面的差异,建议国内生产导向型企业聚焦主业相关多元化,采取渐进策略实现产融结合,降低跨越式转型风险。 Abstract: With the rapid development of industry-finance integration, the evolution of the mode of combining industry and finance has become one of the focuses of the study of industry-finance integration. Based on the resource- based theory and the iceberg theory used in the business model analysis, the tacit knowledge of industry-finance integration can be summed up as three dimensions: social relations network, collaboration mechanism and technology level. Taking the GE and Legend Holdings as examples, this paper finds that the mode of industry-finance integration need be matched with the external environments. Based on the differences of the two cases, especially at the aspect of tacit knowledge, we suggest domestic production-oriented enterprises focus on the related diversification around the main business, and adopt a progressive strategy which could reduce the risk of leapfrog transition when they want to achieve industry-finance integration.
出处 《科技促进发展》 CSCD 2017年第3期145-153,共9页 Science & Technology for Development
基金 国家自然科学基金项目:面向经济 社会和环境协调发展的现代物流管理研究(编号:71390330) 负责人:汪寿阳 促进经济 社会和环境协调发展物流创新(编号:71390331) 负责人:汪寿阳 基于不完全信息博弈模型的航空碳税和碳关税政策应对策略研究(编号:71373262) 负责人:乔晗
关键词 产融结合 演化路径 GE 联想控股 Industrial-Financial Integration Evolutionary Path GE Lenovo Holdings
  • 相关文献

参考文献12

二级参考文献108

  • 1徐晟.产融结合:我国市场经济中要素优化的途径选择[J].上海金融,1997(11):13-16. 被引量:11
  • 2WANGShouyang,YULean,K.K.LAI.CRUDE OIL PRICE FORECASTING WITH TEI@I METHODOLOGY[J].Journal of Systems Science & Complexity,2005,18(2):145-166. 被引量:74
  • 3[1]Deboeck G J.Trading On the Edge:Neural,Genetic,and Fuzzy Systems for Chaotic Financial Markets[M].New York:Wiley,1994.
  • 4[2]Yaser S A M,Atiya A F.Introduction to Financial Forecasting[J].Applied Intelligence,1996,6:205-213.
  • 5[3]Hann T H,Steurer E.Much Ado about Nothing? Exchange Rates Forecasting:Neural Networks vs.Linear Nodels Using Monthly and Weekly Data[J].Neurocomputing,1996,10:323-339.
  • 6[4]WANG S Y.TEI@I:A New Nethodology for Studying Complex Systems[Z].The International Workshop on Complexity Science,Tsukuba,Japan,2004.
  • 7[6]Rumelhart D,Hinton G,Williams R.Learning Internal Representations by Error Propagation[C].//Rumelhart D,McClelland J.Parallel Distributed Processing:Explorations in the Microstructure of Cognition[M].Cambridge,MA:MIT Press,1986:318-363.
  • 8[7]Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
  • 9[8]ZHANG G P.Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model[J].Neurocomputing,2003,50:159-175.
  • 10[9]CHEN A S,Leung M T.Regression Neural Network for Error Correction in Foreign Exchange Forecasting and Trading[J].Computers & Operations Research,2004,31:1049-1068.

共引文献493

同被引文献71

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部