期刊文献+

基于生物群集行为的无人机集群控制 被引量:53

Autonomous control for unmanned aerial vehicle swarms based on biological collective behaviors
原文传递
导出
摘要 生物群集行为是一种普遍存在的自然现象,群体中的个体利用简单的规则、局部的交互,形成了鲁棒性强、自适应度高、可扩展性好的自组织行为,在系统层面体现为智能的涌现。本文首先简要叙述了蚁群、蜂群、鸽群、鱼群等典型的生物群集,并从组织结构的分布式、行为主体的简单性、作用模式的灵活性、系统整体的智能性等方面分析了生物群体智能的特点。然后,介绍了部分具有代表性的无人机集群项目,总结了无人机集群的关键技术,包括集群态势感知、自主编队控制、智能协同决策。最后,从生物群集和无人机集群在直观上的相似性出发,分析了生物群体和无人机集群自主控制的映射关系,并探讨了仿生物群集的无人机集群自主控制中的核心问题。 Through simple rules and local interactions, social groups exhibit robust, scalable and flexible global behaviors, which are useful for applications in engineering areas. In this paper, we first introduce collective behaviors of biological systems, such as colonies of ants, flocks of birds, colonies of bees and schools of fish, and summarize the properties of these social groups. Then we analyze the key techniques of unmanned aerial vehicle (UAV) swarms, including mass UAV management and control, swarm perception and situation sharing, multiple UAV autonomous fi)rmation flight, and swarm cooperative decision making. Afterwards, we briefly sort the UAV swarms that take inspiration from the self-organized behaviors of social animals Finally, we outline open problems and possible research directions in collective motion.
作者 段海滨 李沛
出处 《科技导报》 CAS CSCD 北大核心 2017年第7期17-25,共9页 Science & Technology Review
基金 国家自然科学基金重点项目(61333004)
关键词 生物群集行为 无人机 集群 自主控制 collective behaviors unmanned aerial vehicles swarm autonomous control
  • 相关文献

参考文献10

二级参考文献122

  • 1王芳.蚁群算法的原理及其应用[J].潍坊教育学院学报,2005,18(2):70-72. 被引量:7
  • 2俞辉,王永骥,程磊.基于有向网络的智能群体群集运动控制[J].控制理论与应用,2007,24(1):79-83. 被引量:18
  • 3Kennedy J, Eberhart R, Shi Y H. Swarm Intelligence. San Francisco: Morgan Kaufman Publishers, 2001.
  • 4Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behavior. Nature, 2000, 406:39-42.
  • 5Office of the Secretary of Defence. Unmanned Aircraft Systems Roadmap 2005-2030, 2005.
  • 6美国国防部.无人飞行器系统路线图2005-2030.2007,http://www.dsti.net/News/43995.htm.
  • 7Nikolos I K, Valavanis K P, Tsourveloudis N C, et al. Evolutionary algorithm based offiine/online path planner for UAV navigation. IEEE T Sys Man Cy B, 2003, 33:898-912.
  • 8Tanner H G, Christodoulakis D K. Decentralized cooperative control of heterogeneous vehicle groups. Robot Auton Syst, 2007, 55:811- 823.
  • 9Garis H de, Batty T. "Multi-Mod": A PC based software system for controlling an artificial brain containing 10,000 evolved neural net modules. Proceedings of the 2004 Congress on Evolutionary Computation, Portland, 2004. 1:816-819.
  • 10Luis M C, Juan M F, Jose A G, et al. Ant colony optimization for learning Bayesian networks. Int J Approx Reason, 2002, 31:291-311.

共引文献444

同被引文献537

引证文献53

二级引证文献567

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部