期刊文献+

热处理对Nb-35Ti-4C合金微观组织和力学行为的影响 被引量:4

Effect of Heat Treatment on Microstructure and Mechanical Behavior of Nb-35Ti-4C Alloy
原文传递
导出
摘要 采用XRD、SEM和XRD对Nb-35Ti-4C合金热处理前后的相组成、界面结构、组织演变及力学行为进行研究。结果表明:热处理前后合金均由Nbss和(Nb,Ti)C构成。热处理过程中Nbss内部析出长条状的二次(Nb,Ti)C;(Nb,Ti)C内则析出长条状的二次Nbss。二次Nbss依附于fcc(Nb,Ti)C的密排面(111)面形核,与母相(Nb,Ti)C满足(N-W)位相关系:[011]_((Nb,Ti)C)//[001]_(Nbss), (111)_((Nb,Ti)C)//(110)_(Nbss)。碳化物与Nbss具有洁净良好的界面结合。热处理后单相(Nb,Ti)C变为(Nb,Ti)C+二次Nbss的共析组织。纳米压痕测试表明共析组织转变降低了碳化物的脆性,提高了合金的韧性。 The phase composition, interface structure, microstructure evolution and mechanical behavior of the Nb-35Ti-4C alloy before and after heat-treatment were comprehensively investigated using X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscope(TEM) and Nano Indenter 'XP. The results show that as cast and heat treated Nb-35Ti-4C alloy consists of Niobium solid solution(Nbss) and carbide of(Nb, Ti)C. The numerous secondary(Nb, Ti)C with several nanometers in size precipitates from Nbss matrix during heat treatment. Furthermore, the secondary Nbss with a reticular struct ure distribution also precipitates from carbide, the phase transformation of the carbide can be summarized as(Nb, Ti)C→(Nb, Ti)C+Nbss. The secondary Nbss nucleates along the close-packed surface(111) of fcc(Nb, Ti)C at the early state of heat-treatment, and the strip secondary Nbss and the(Nb, Ti)C matrix adopt a well-defined orientation relationship(OR): [0 11]( Nb,Ti)C//[001]Nbss,(111)(Nb,Ti)C//(110)Nbss. The hard carbide has a strong bonding with the Nbss, and the eutectoid transformation of the large sized carbide after heat treatment leads to less possibility for the cracks formation on the carbide surface, which in turn improves the toughness.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2017年第3期777-782,共6页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51004077) 山东省科技发展计划(攻关)项目(2011GGX10226) 山东省优秀中青年科学家奖励基金(BS2010CL046)
关键词 Nb-35Ti-4C合金 微观组织 位相关系 Nb-35Ti-4C alloy microstructure orientation relationship
  • 相关文献

参考文献4

二级参考文献25

  • 1王永明,乔谓阳,李立君.计算机模拟技术在航空发动机设计中的应用[J].燃气涡轮试验与研究,2005,18(1):1-8. 被引量:5
  • 2张小明.日本Nb基超合金和复合材料研究新进展[J].稀有金属快报,2005,24(2):3-7. 被引量:5
  • 3Sellers J F, Daniele C J. DYNGEN-A Program for Calculating Steady-state Transient Performance of Turbojet and Turbofan Engines [R]. NASA TND-7901,1975.
  • 4Keith Beker, Patrick Biltgen. A Single Stage to Orbit Turbine Based Combined Cycle Propulsion System [C]. Undergraduate Thesis. Georgia Institute of Technology. June,6,2003.
  • 5Kandebo S W. General Elective Tests Forward Swept Fan Technology [ Z]. Aviation Week &Space Technology , 1996.
  • 6Lejambre C R, Zacharias R M, Biederman A J, et al. Development and application of a multistage Navicr-Stokes flow solver, Part lI : application to a high pressure compressor design [ J ]. ASME Journal of Turbom achinery,1998, 120 (4) : 215-223.
  • 7Guillermo Paniagua, Szabolcs Szokol, Richard Varvill. Contrarotating Turbine Aerodesign for an Advanced Hypersonic Propulsion System [J]. Journal of Propulsion and Power ,2008, 24 (6):1269-1277.
  • 8Walston S, Cetel A, MacKay R, et al. Joint Development of a Fourth Generation Single Crystal Superal [R]. NASA/rM-2004-213062.
  • 9Gilbert B. Directional Control of Large Mass Flows by Fluidics. ASME 3rd Triennial International Symposium on Fluid Control [C]. Measurement, and Visualization, August 1991.
  • 10Reginald G W. Huidic Thrust Vectoring and Throat Control Exhaust Nozzle[R]. AIAA 2002-4060, 2002.

共引文献47

同被引文献22

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部