期刊文献+

企业信息资源管理与大数据的融合与变革 被引量:14

Fusion and Transformation of Enterprise Information Resource Management and Big Data
原文传递
导出
摘要 【目的/意义】企业信息资源管理和大数据在发展中都面临困境,一方面传统信息资源管理虽有成熟的理论却未能真正发挥作用,另一方面大数据的作用被重视却缺少大数据管理的方法论。【方法/过程】为了解决上述两难困境,将大数据视作信息资源的新形式,借用传统信息资源管理的理论和方法对大数据进行管理,使企业信息资源管理与大数据融合。【结果/结论】由于大数据的新特征、新范式、新价值,信息资源管理理论和方法需要相应的变革,树立适应大数据时代的新型理念,以数据驱动决策和管理应用为目标,在信息生产、采集、组织、检索、分析等环节融入大数据思想,同时对技术手段、经济手段、法律手段等做出相应的改变。 【Purpose/significance】 Enterprise information resource management and big data are respectively facing theproblem. On the one hand, the traditional information resource management which has mature theories is fail to play a sig-nificant role, on the other hand, big data which has attached great attention is lack of big data management methodology.【Method/process】In order to solve the dilemma, we regard big data as new forms of information resources. By drawing onthe experienced theories and methods of information resource management, we try to establish the fusion between enterpriseinformation resource management and big data.【Result/conclusion】Due to the new features, the new paradigm and thenew value of big data, the theories and methods of information resource management needs to transform. The enterprisesshould focus ideas on value creation and total involvement, with the goal of data-driven decision making and management.The enterprises also ought to put the thought of big data through the process of information production, collection, organiza-tion, retrieval, and analysis, and make corresponding change in technical, economic and legal means.
出处 《情报科学》 CSSCI 北大核心 2017年第3期8-12,30,共6页 Information Science
基金 教育部人文社会科学研究青年基金项目(11YJC630040) 教育部人文社会科学研究规划基金项目(13YJAZH123)
关键词 信息资源管理 大数据 融合 变革 information resource management big data Fusion transformation
  • 相关文献

参考文献8

二级参考文献121

  • 1朱江.西蒙和管理决策理论[J].管理现代化,1992,12(5):47-48. 被引量:3
  • 2涂子沛.大数据[M].桂林:广西师范大学出版社.2012.
  • 3Dean J,Ghemawat S.MapReduce:Simplified data processing on large clusters[C]//Brewer E,Chen P,eds.Proc.of the OSDI.California:USENIX Association,2004:137-150.
  • 4Ekanayake J,Li Hui,Zhang Bing-jing,et al.Twister..A Runtime for Iterative MapReduce[C]//The First International Workshop on MapReduce and its Applications (MAPREDUCE'10).2010:110-119.
  • 5Bu Y Y,Howe B,Balazinska M,et al.HaLoop:Efficient iterarive data processing on large clusters[J].PVLDB2010,2010,3(1/2):285-296.
  • 6Isard M,Budiu M,Yu Y,et al.Dryad:Distributed data-parallel programs from sequential building blocks[J].ACM SIGOPS Operating Systems Review,2007,41 (3):59-72.
  • 7Zaharia M,Chowdhury M,Franklin M J,et al.Spark:Cluster Computing withWorking Sets[R].Technology report of UC Berkeley.2011.
  • 8Dittrich J,Quian'e-Ruiz J A,Jindal A,et al.Hadoop++:Making a yellow elephant run like a cheetah (without it even noticing)[J].PVLDB,2010,3(1/2):518-529.
  • 9Obama administration unveils "Big Data" initiative: announcesMYM 200 million in new R&D investments [ EB/OL]. (2013- 01-23 ) . http: //www. whitehouse. gov/sites/default/files/mi- crosites/ostp/big_data press_release_final_2, pdf.
  • 10HILBERT M. Big data for development: from information-to knowledge societies [ EB/OL ]. http: //irevolution. net/2013/ 02/04/big-data-for-development-2/.

共引文献653

同被引文献173

引证文献14

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部