期刊文献+

协同云计算下的差异区域数据挖掘平台设计与实现 被引量:2

Design and implementation of difference area data mining platform under collaborative cloud computing
在线阅读 下载PDF
导出
摘要 针对在协同云计算下差异区域数据挖掘偏差较大,准确度不高的问题,提出基于非线性时间序列分析且分层调度控制的差异区域数据挖掘方法。首先构建协同云计算下差异区域数据的信息传输模型,进行数据信息流的时间序列采样分析;然后采用非线性时间序列分析方法重构特征空间,在重构的特征相空间进行自适应分层调度控制,提取关联规则特征,有效挖掘数据;最后进行仿真测试,结果表明该方法的数据挖掘精度较高,抗扰性能较强。 Since the difference area data mining has large deviation and low accuracy under collaborative cloud computing, a difference area data mining method based on nonlinear time series analysis and hierarchical scheduling control is proposed. The information transmission model of the difference area data under collaborative cloud computing was constructed to analyze the time series sampling of the data information stream. The nonlinear time series analysis method is used to reconstruct the fea- ture space, in which the adaptive hierarchical scheduling control was conducted to extract the characteristics of the association rules and mine the data effectively. The method was performed with simulation test. The results show that the method has high data mining precision, and strong interference resistance.
作者 韩冬 韩春庆
出处 《现代电子技术》 北大核心 2017年第5期118-121,共4页 Modern Electronics Technique
关键词 协同云计算 数据挖掘 调度控制 平台设计 collaborative cloud computing data mining scheduling control platform design
  • 相关文献

参考文献9

二级参考文献135

  • 1薛振框,李少远.MIMO非线性系统的多模型建模方法[J].电子学报,2005,33(1):52-56. 被引量:18
  • 2雷英杰,王宝树,苗启广.直觉模糊关系及其合成运算[J].系统工程理论与实践,2005,25(2):113-118. 被引量:69
  • 3张洪美,徐泽水,陈琦.直觉模糊集的聚类方法研究[J].控制与决策,2007,22(8):882-888. 被引量:64
  • 4Bohm C, Berchtold S, Kriagel H P, et al. Mul-tidimensional index structures in relational databases [C]// Proceedings of the 1st International Conference on Data Warehousing and Knowledge Discovery (DaWak 99), Florence, Italy, F Aug 30-Sep 01, 1999.
  • 5Dean J, Ghemawat S, Usenix. MapReduce: Sim-plified data processing on large clusters [C]// Proceedings of the 6th Symposium on Operating Systems Design and Implementation (OSDI 04), San Francisco, CA, F Dec 06-08, 2004.
  • 6Mccreadie R M C, Macdonald C, Ounis I. On Single-Pass Indexing with MapReduce [M]. New York, USA: Assoc Computing Machinery, 2009.
  • 7Lammel R. Google's MapReduce programming model - Revisited [J]. Science of Computer Programming (S0167-6423), 2008, 70(1): 1-30.
  • 8Moretti C, Steinhaeuser K, Thain D, et al. Scaling Up Classifiers to Cloud Computers [C]// Proceedings of the IEEE International Conference on Data Mining, Pisa, Italy, F, 2008. USA: IEEE Computer Society, 2008.
  • 9Gillick D, Faria A, Denero J. MapReduce: Dis-tributed Computing for Machine Learning [M/OL] (2006) [2011-07]. http://www.icsi.berkeley.edu/-arlo/publications/gillick_cs262a _proj.pdf.
  • 10Yang L, Shi Z. An Efficient Data Mining Framework on Hadoop using Java Persistence API [C]// The 10th IEEE International Conference on Computer and In-formation Technology (CIT-2010). Bradford, UK. USA: IEEE, 2010.

共引文献199

同被引文献29

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部