摘要
The electronic transport properties of armchair-edged boron nitride nanoribbons(ABNNRs) devices were investigated by the first principle calculations. The calculated results show that the ABNNR device doped with carbon atoms in one of the electrodes acts as a high performance nanoribbon rectifier. It is interesting to find that there exists a particular bias-polarity-dependent matching band between two electrodes,leading to a similar current-voltage(I-V) behavior as conventional P-N diodes. The I-V behavior presents a linear positive-bias I-V characteristic,an absolutely negligible leakage current,and a stable rectifying property under a large bias region. The results suggest that C doping might be an effective way to raise ABNNRs devices' rectifying performance.
The electronic transport properties of armchair-edged boron nitride nanoribbons(ABNNRs) devices were investigated by the first principle calculations. The calculated results show that the ABNNR device doped with carbon atoms in one of the electrodes acts as a high performance nanoribbon rectifier. It is interesting to find that there exists a particular bias-polarity-dependent matching band between two electrodes,leading to a similar current-voltage(I-V) behavior as conventional P-N diodes. The I-V behavior presents a linear positive-bias I-V characteristic,an absolutely negligible leakage current,and a stable rectifying property under a large bias region. The results suggest that C doping might be an effective way to raise ABNNRs devices' rectifying performance.
基金
supported by the National Natural Science Foundation of China(21401023 and 21374017)
Cultivating Fund for Excellent Young Scholar of Fujian Normal University(FJSDJK2012063)
Program for Innovative Research Team in Science and Technology in Fujian Province University(IRTSTFJ)