期刊文献+

Ti-6Al-4V合金激光辅助铣削的刀具磨损特性 被引量:7

Characteristics of Cutting Tool Wear during LAM Processes for Ti-6Al-4V Alloy
在线阅读 下载PDF
导出
摘要 对激光辅助铣削钛合金Ti-6Al-4V进行了实验研究,分析了切削力、切屑形貌和刀具的磨损特性。结果表明,与普通铣削相比,激光辅助铣削条件下,刀具切向的切削力明显减小,刀具径向的切削力略有增大;随着激光功率的增大,钛合金切屑呈现出从锯齿形向连续形过渡的特征,不再具有明显的绝热剪切带;与普通铣削时刀具崩刃的损伤不同,激光辅助铣削时刀具的磨损主要表现为后刀面磨损;激光辅助铣削可以减小后刀面的最大磨损量,但并不能改善后刀面平均磨损量。激光辅助铣削时,刀具寿命得到了延长,当后刀面的平均磨损量在0.15~0.20mm之间时,可以降低刀具的磨损速度,从而延长刀具的使用寿命,但激光辅助铣削并不能降低刀具的初期磨损速度。 Cutting forces,chip morphology,and tool wear mechanism during LAM processes for Ti-6Al-4Valloy were investigated experimentally herein.The results show that,under the LAM conditions,the tangential cutting forces of the cutting tool decrease significantly,while the radial cutting forces of the cutting tool increase slightly.With the increasing of laser power,the saw-tooth chips gradually transform to the continuous chips,and the adiabatic shear bands are disappeared.Different from the break edge tool wear during the conventional milling processes,the frictional wear is the main wear pattern during LAM processes,which is beneficial to reduce the maximum wear values on the tool flank,but it may not reduce the average wear values on the tool flank.The tool life is prolonged during LAM processes.When the mean wear extent of flank in the range of 0.15~0.20 mm,the wear speed of cutting tool is reduced.It manifests that the LAM may not reduce the initial wear speeds of cutting tools.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2016年第21期2877-2883,共7页 China Mechanical Engineering
基金 江西省教育厅科技项目(GJJ150737)
关键词 钛合金 激光辅助铣削 加工 刀具磨损 titanium alloy laser assisted milling(LAM) machining tool wear
  • 相关文献

参考文献4

二级参考文献33

  • 1WANG Yang, YANG Li-jun, WANG Na-jun (Department of Mechanical Engineering, Harbin Institute of Technology, Harbin 150001, China).An Investigation of Laser Assisted Machining of Al_2O_3 Particle Reinforced Aluminum Matrix Composite[J].厦门大学学报(自然科学版),2002,41(S1):7-8. 被引量:6
  • 2吕杨,李晓岩.航空航天用钛合金的切削加工现状及发展趋势[J].航空制造技术,2012,55(14):55-57. 被引量:7
  • 3程国强,李守新.金属材料在高应变率下的热粘塑性本构模型[J].弹道学报,2004,16(4):18-22. 被引量:26
  • 4EZUFWU E O. Key improvements in the machining of difficult-to-cut aerospace superalloys[J]. International Journal of Machine Tools & Manufacture, 2005, 45: 1353-1360.
  • 5SCHULZ H, MORIWAKI T. High speed machining[J]. Ann. CIRP, 1992, 41(2): 637- 643.
  • 6ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22.
  • 7MARGOLIN H, COHEN P. Evolution of the equiaxed Morphology of phases in Ti-6A1-4V[J]. Titanium 80: Science andTechnology, 1980: 1554-1561.
  • 8NESTERENKO V F, MEYERS MA, LASALVIAJ C, et al. Shear localization and recrystaUization in high-strain , high-strain-rate deformation of tantalum[J]. Materials Science and Engineering A, 1997, 229 (12): 23-41.
  • 9KOMANDURI R, BROWN R H. On the mechanics of chip segmentation in machining[J]. Journal of Engineering for Industry, 1981, 103(1): 33-51.
  • 10RECHT R F. A dynamic analysis of high speed machining[J]. Journal of Engineering for Industry, 1985, 107: 309-315.

共引文献138

同被引文献68

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部