期刊文献+

挠性板导向的水平冲击试验台强度及运动规律分析

The Strength and Motion Law Analysis of the Horizontal Shock Testing Machine Guided by the Flexible Plate
在线阅读 下载PDF
导出
摘要 水平冲击试验台可用于舰载设备抗冲击能力的考核试验,但导轨导向的水平冲击试验台工作时会出现卡死问题,为此提出挠性板导向的水平冲击试验台。为验证其可行性,用有限元方法计算分析了该试验台的输出波形以及挠性板的应力分布情况。结果发现,挠性板在冲击过程中储存弹性势能,对试验波形有一定的影响;台体最大位移设计值为94mm,计算值为89.5mm,减少了4.8%;台体最大速度设计值为4m/s,计算值为3.93m/s,减少了1.75%;台体正波峰值加速度设计值为571m/s^2,计算值为532m/s^2,减少了6.8%;台体负波峰值加速度设计值为175m/s^2,计算值为183m/s^2,增加了4.6%。因此用挠性板作为导向装置能够满足冲击试验台对设计波形的要求。 The horizontal shock testing machine can be used to test the impact resistant ability of the shipboard equipments, but the shock testing machine guided by the lead rail possible is likely to occur stuck fault during working. Therefore, the horizontal shock testing machine, which guided by the flexible plate was put forward. To verify the feasibility, using the finite element method to analyze the output waveform of the shock testing machine and the stress distribution of the flexible plate. Then find out the flexible plate stored elastic energy in the process of impact which has a certain influence on the testing waveforms. The test-bed theoretical value of maximal displacement is 94 mm, the calculated value is 89.5 mm, the decrease is 4.8%. The test-bed theoretical value of maximal speed is 4 m/s, the calculated value is 3.93 m/s, the decrease is 1.75%. The test-bed theoretical value of positive wave peak acceleration is 571 m/s^2 , the calculated value is 532 m/s^2 , the decrease is 6.8%. The test-bed theoretical value of negative wave peak acceleration is 175 m/s^2, the calculated value is 183 m/s^2 , the increase is 4.6%. Therefore, the flexible plate as a guide equipment can satisfy the theoretical requirement of the shock testing machine for waveform.
出处 《造船技术》 2016年第5期31-34,共4页
关键词 舰载设备 冲击 试验台 挠性板 波形 Shipboard equipments Impact Test-bed Flexible plate Waveform
  • 相关文献

参考文献11

  • 1Gene R, Maurice B. 50th anniversary lecture the e- volution of spectral techniques in navy shock design [-J]. Shock and Vibration Bulletin, 1983, 3 (1) 59-70.
  • 2冯麟涵,汪玉,杜俭业.水面舰艇非典型安装设备冲击环境特征[J].哈尔滨工程大学学报,2012,33(8):972-977. 被引量:6
  • 3周璞.舰船设备反冲力动力响应的仿真计算及其研究[D].上海:上海交通大学,2011.
  • 4BV0430-85,德国国防军舰建造规范-冲击安全性[S].科布伦茨:联邦德国国防装备技术和采购局,1987.
  • 5国防科学技术工业委员会.军用设备环境试验方法——冲击试验:GJBl50,18-86[S],1986.
  • 6GJBl060.1-91,舰船环境条件要求-机械环境[S].北京:国防科学技术工业委员会,1991.
  • 7Kamaya M, Taheri S. The dynamics of three-di- mensional underwater explosion bubble [J]. Nucle- ar Engineering and Design, 2008, 238(9): 2147 -2154.
  • 8Bahrani N, Valley B. Calculating the Effect of Surface or Underwater Explosions on Submerged [J]. Struc- tural Safety, 2011, 34(12):381-389.
  • 9Schmied J, Kramer E. Acoustic signals of underwater explosions near surfaces[J]. Journal of Sound and Vi- bration, 2013, 227(4): 469-480.
  • 10刘建湖,潘建强,何斌.各主要海军国家设备抗冲击标准之比较[J].应用科技,2010,37(9):17-25. 被引量:25

二级参考文献20

  • 1张建乔,刘永红,吕广忠.子模型法在割缝筛管精细分析和优化设计中的应用[J].应用基础与工程科学学报,2005,13(4):430-435. 被引量:2
  • 2姚熊亮,张阿漫,许维军.声固耦合方法在舰船水下爆炸中的应用[J].哈尔滨工程大学学报,2005,26(6):707-712. 被引量:63
  • 3姚熊亮 张阿漫 赵新 等.冲击载荷作用下舰用主汽轮机组动态响应分析.哈尔滨工程大学学报,2007,28:11-15.
  • 4BV0430-85,德国国防军舰建造规范-冲击安全性[S].科布伦茨:联邦德国国防装备技术和采购局,1987.
  • 5GJBL060.1-91,中华人民共和国国家军用标准-舰船环境条件要求机械环境[S].北京:国防科学技术工业委员会,1991.
  • 6BV043/73 shock security.Naval vessel fabricate criterion of Germany's national defence army[S].
  • 7MIL-S-901D.Military specification shock tests,h.i.(high-impact)shipboard machinery,equip-ment,and systems.requirements for[S].
  • 8BISHOP J H.Underwater Shock Standards and Tests for Naval Vessels[C] //National Conference Pub lication-Institution of Engineers.Sydney,Australia,1993.
  • 9SCAVUZZO R J,RAFTOPOULOS D D.An analysis of Spectrum dip in underwater shock[J].The Shock and Vibration Bulletin,1970,40:76-87.
  • 10SHAW R C.Structural evaluation of TACAN/JTIDS/CDF antenna mast assembly[J].Naval command control and ocean surveiliance center rdt and e div(san diego)CA,1994,4:i-C9.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部