摘要
利用复变函数方法研究了1维6方准晶具有有限摩擦的周期接触问题.利用Hilbert核积分公式,通过周期Riemann-Hilbert边值问题的求解,得到了其封闭形式的解,并给出了周期直水平基底压头、周期直倾斜基底压头、周期圆基底压头作用下接触应力的显式表达式.研究结果表明:接触应力在压头的任一端点处,具有可积奇异性;当忽略相位子场的贡献时,与正交各向异性材料周期接触问题的相应结果一致.
By using the complex variable method, the frictionally periodic contact problems in gonal quasicrystals were discussed. Based on the Hilbert kernel integral formula and through bert boundary value problem is solved, the closed form solutions was obtained. Further, the tact stress were given under the action of periodic straight horizontal basal punch, periodi one-dimensional hexaperiodic Riemann-Hilexplicit solutions of conc straight inclined basal punch, periodic circular basal punch. The results have showed that the contact stress in punches at arbitrary end had integrable singularity. If the effect phason field is neglected, the obtained results match with the corresponding resuits of periodic contact problem in orthogonal anisotropic materials.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2016年第5期505-510,共6页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金(11362018)
高等学校博士学科点专项科研基金(20116401110002)
宁夏大学研究生创新计划(GIP201622)资助项目
关键词
1维6方准晶
周期接触问题
Hilbert核积分公式
one-dimensional hexagonal quasicrystals
periodic contact problems
Hilbert kernel integral formula