期刊文献+

基于改进模糊神经网络的PID参数自整定 被引量:53

Self-tuning of PID parameters based on modified fuzzy neural network
在线阅读 下载PDF
导出
摘要 针对传统PID整定控制效果差且单纯神经网络整定存在参数学习和调整困难等问题,提出了一种基于改进模糊神经网络的PID参数整定方法。在该方法中,PID控制器的控制参数采用基于Mamdani模型的模糊神经网络进行自适应整定,模糊神经网络参数采用混沌遗传算法离线粗调和BP算法在线细调的方式进行学习和调整,仿真结果表明该整定策略动态响应快、误差控制精度高且网络中各节点及参数物理意义明确。最后分别从模糊规则数的变化及适应度函数的选取两方面提出两种优化方案,仿真结果表明增加模糊规则数或采用不同的适应度函数都有利于进一步减小控制误差。 Considering the poor effect in traditional PID tuning and parameters adjustment difficulties in neural networks, this paper proposed a new method of self-tuning of PID parameters based on improved fuzzy neural network. In this control method, the control parameters of PID controller were adaptively adjusted by fuzzy neural network based on Mamdani model, the param- eters of fuzzy neural network were optimized by the hybrid learning methods integrating the offline chaos genetic algorithm for coarse adjustment, with the online BP algorithm for precise adjustment, the simulation results show that the tuning strategy has fast dynamic response and high error control accuracy, every nodes and parameters have explicit physical meaning. Finally, it proposed two inproved scheme respectively from the number of fuzzy rules and the selection of fitness function, the simulation results show that the increase of fuzzy rules and the different fitness function is helpful to further reduce the control error.
出处 《计算机应用研究》 CSCD 北大核心 2016年第11期3358-3363,3368,共7页 Application Research of Computers
基金 上海市自然科学基金资助项目(12ZR1420700)
关键词 PID整定 Mamdani模型 模糊神经网络 混沌遗传算法 BP算法 PID tuning Mamdani model fuzzy neural control chaos genetic algorithm BP algorithm
  • 相关文献

参考文献26

二级参考文献186

共引文献217

同被引文献404

引证文献53

二级引证文献216

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部