期刊文献+

微博中基于多路径目标的广告投送技术

Online advertising technique based on desired set of users via different paths in microblogs
在线阅读 下载PDF
导出
摘要 基于微博广告平台,提出两个方法增加广告营销的准确性。第一是识别近似话题,给定一个指定的话题查询,在微博中近似地识别同样的听众,其思想是代替初始的原始话题,对近似话题出价,用尽可能小的成本,使广告达到同样的用户数目;提出一个算法,根据用户指定的话题查询识别专家,根据专家经验对专家分类。该方法在精确营销中起到重要作用。利用大规模的Twitter实验数据评估所提算法,实验验证了算法的精确性和有效性。 Two problems were introduced to marketing campaigns and aid ad on Twitter advertising platforms.Analogous topics were identified where the same audience was found approximately for a given query topic on the Twitter platform.The reason is that the same audience was reached approximately by bidding on an analogous topic instead of the original query topic,while spending less of budget.Algorithms were presented to identify expert users on a given query topic.A large dataset from Twitter was collected for evaluating the proposed algorithms,and results show that the efficiency and accuracy were higher than alternative approaches.
出处 《计算机工程与设计》 北大核心 2016年第10期2733-2737,共5页 Computer Engineering and Design
基金 河南省高等学校重点科研基金项目(15A520054) 河南省科技厅科技计划课题基金项目(112102310550)
关键词 类似话题 专家分类 广告营销 微博算法 话题分类 analogous topics expert categorization advertising microblogs topic classification
  • 相关文献

参考文献4

二级参考文献137

  • 1ManningCD,RaghavanP,SchlotzeH.信息检索导论[M].王斌,译.北京:人民邮电出版社,2010:241-276.
  • 2Adafre S F, de Rijke M, Sang E T K. Entity retrieval[ C]// Proceedings of RANLP, Bulgaria, September, 2007.
  • 3Balog K. People search in the enterprise [ D ]. University of Amsterdam, 2008.
  • 4Rode H. From document to entity retrieval: improving precision and performance of focused text search [ D ]. University of Twente, 2008.
  • 5Balog K, Azzopardi L, de Rijke M. A language modeling framework for expert finding [ J ]. Information Processing & Management, 2009, 45 ( 1 ) : 1 - 19.
  • 6Serdyukov P, Hiemstra D. Advances in information retrieval [ M ]. Springer Berlin / Heidelberg, 2008.
  • 7Balog K, Weerkamp W, de Rijke M. A few examples go a long way : constructing query models from elaborate query formulations [ C ]// Proceedings of the 31th Annual International ACM SIGIR Conference on Research & Development on Information Retrieval ( SIGIR 2008 ). 2008 : ACM.
  • 8Petkova D, Croft W B. Proximity-based document representation for named entity retrieval [ C ]/! Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, New York : ACM ,2007.
  • 9Fang H, Zhai C. Probabilistie models for expert finding[ C]// Proceedings of the 29th European Conference on IR Research Rome, Italy: Springer-Verlag,2007.
  • 10Balog K, Azzopardi L, Rijke M D. Formal models for expert finding in enterprise corpora[ C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Seattle, Washington, USA : ACM ,2006.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部