期刊文献+

云学习平台大学生学业成绩预测与干预研究 被引量:25

Predictions of and interventions in university students' academic achievement on cloud-based learning platforms
原文传递
导出
摘要 预测在校大学生学业成绩并及时进行干预指导,是提升大学生学习效果的有效途径。云环境下,学习中过程性数据的积累为预测分析提供了有力依据。本研究设计并开展一门基于实体课堂和云学习平台(MOODLE平台、微信平台)的混合式大学课程。通过收集学生多类属性及学习过程性数据建立多元回归模型,对其将取得的成绩进行预测,并展开教学干预以提升其学习效果。结果显示,在预测模型方面,多元回归模型可以在全班水平上取得较佳的预测效果;在预测因子方面,绩点、在线学习参与度、前导课成绩和学习兴趣是影响学业成绩的重要因素;在干预效果方面,教学干预取得了较好效果,学弱群体接受干预后进步显著。 Predicting students' academic achievement and providing timely intervention guidance has proved to be an effective strategy for enhancing learning outcomes. In the cloud-based environment, process data generated by learning performance can be an important source of prediction. This study reports on a university course blending the physical classroom and cloud-based platforms such as Moodle and WeChat. A multiple regression model is built using various student attributes and learning process data, in order to predict academic achievement and offer timely intervention guidance. Key prediction factors include GPA, online learning engagement, preceding course achievement, and learning interest. Intervention is found to be conducive to better learning outcomes, in particular for students in difficulty.
作者 尤佳鑫 孙众 Jiaxin You Zhong Sun
出处 《中国远程教育》 CSSCI 北大核心 2016年第9期14-20,79,共7页 Chinese Journal of Distance Education
基金 国家社会科学基金重大委托项目"语言大数据挖掘与文化价值发现"(批准号:14&ZH0036)的部分研究成果
关键词 云学习平台 学业成绩 预测 干预 多元线性回归 cloud-based learning platform academic achievement prediction intervention multiple linear regression
  • 相关文献

参考文献31

  • 1李建萍.基于加权支持向量机的学习成绩预测模型[J].中国科教创新导刊,2009(14):137-138. 被引量:4
  • 2吴靖媛,高光珍,胡象岭.高中生物理学习兴趣与学习成绩关系的实证研究[J].教育实践与研究(中学版)(B),2010(11):9-11. 被引量:8
  • 3谢幼如,刘春华,朱静静,尹睿.大学生网络学习自我效能感的结构、影响因素及培养策略研究[J].电化教育研究,2011,32(10):30-34. 被引量:75
  • 4叶海智,赵耀远,吴金鸽.基于Web的动态评价系统设计及其应用效果探究[J].电化教育研究,2014,35(9):79-84. 被引量:8
  • 5Alavi, M. (1994). Computer-mediated collaborative learning: an empiri- cal evaluation. Management Information Systems Quarterly, 18(2):159-174.
  • 6Astin, A. W. (1996). Involvement in learning revisited: lessons we have learned. Journal of College Student Development, 37(2): 123-134.
  • 7Ayan, M. N. R., & Gareia, M. T. C. (2008). Prediction of university stu- dents' aeademie achievement by linear and logistic models. The Span- ish journal of psyehoh)gy, 11(1): 275-288.
  • 8Bento, R., & Schuster, C. (2003). Participation: The online challenge. In A. Aggaal (Eds.), Web-based education: Learning from experience (pp. 156-164). Hershey, Pennsylvania: Idea Group Publishing.
  • 9Doehy, F. J. R. C. (1994). Investigating the use of knowledge profiles in a flexible learning environment: analyzing students' prior knowledge states. In S. Vosniadnu (Eds.), Psychological and Educational Founda- tions of Technology-Based Learning Environments (pp. 339-353). Berlin, New York: Springer Verlag.
  • 10Flook, L., Repetti, R. L., & Ulhnan, J. B. (2005). Classroom social expe- riences as predictors of academic performance. Developmental psy- chology, 41(2): 319.

二级参考文献36

共引文献91

同被引文献228

引证文献25

二级引证文献171

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部