期刊文献+

Experimental Observation of Phase Transition in Sb203 under High Pressure

Experimental Observation of Phase Transition in Sb203 under High Pressure
在线阅读 下载PDF
导出
摘要 The in situ high-pressure behavior of the semiconductor antimony trioxide (Sb2O3) iS investigated by the Raman spectroscopy techniques and angle-dispersive synchrotron x-ray powder diffractfon in a diamond anvil cell up to 31.5 and 30.7 GPa, respectively. New peaks observed in the external lattice mode range in the Raman spectra at 13.5 GPa suggest that the structural phase transition occurs. The group mode (140 cm^-1) in Sb2O3 exhibits anomalous pressure dependence; that is, the frequency decreases gradually with the increasing pressure. High pressure synchrotron x-ray diffraction measurements at room temperature reveal that the transition from the orthorhombic structure to high-pressure new phase occurs at about 14.2 GPa, corresponding to the softening of the group optic mode (140cm^-1). The in situ high-pressure behavior of the semiconductor antimony trioxide (Sb2O3) iS investigated by the Raman spectroscopy techniques and angle-dispersive synchrotron x-ray powder diffractfon in a diamond anvil cell up to 31.5 and 30.7 GPa, respectively. New peaks observed in the external lattice mode range in the Raman spectra at 13.5 GPa suggest that the structural phase transition occurs. The group mode (140 cm^-1) in Sb2O3 exhibits anomalous pressure dependence; that is, the frequency decreases gradually with the increasing pressure. High pressure synchrotron x-ray diffraction measurements at room temperature reveal that the transition from the orthorhombic structure to high-pressure new phase occurs at about 14.2 GPa, corresponding to the softening of the group optic mode (140cm^-1).
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期112-115,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 11304114
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部