期刊文献+

基于稀疏加权模型的局部判别跟踪 被引量:1

Local Discriminant Tracking Based on Sparse Weighting Model
在线阅读 下载PDF
导出
摘要 为提高视觉跟踪中目标模型的鲁棒性,提出一种基于稀疏加权的局部判别跟踪方法,在贝叶斯推论框架下进行目标跟踪。利用多个局部判别稀疏模型表示目标,根据每个局部模型在表达目标表观时的重要程度分配权重,将目标建模为多个局部模型的加权组合以减弱表观变化对模型的影响。在跟踪中选择与目标模型最相似的候选区域作为跟踪结果,通过遮挡检测减轻遮挡对跟踪的影响,并对目标模型进行在线更新以避免漂移。实验结果表明,该方法能在目标表观发生变化的情况下保证跟踪鲁棒性。 In order to enhance the robustness of the target model in visual tracking, a local discriminant tracking method based on sparse weighing is proposed within Bayesian inference framework. The target is represented as a combination of multiple local discriminative sparse models. The weight value is assigned for each local model according to its significance of expressing the target. The target is modeled as a weighted combination of local models to alleviate the influence of appearance changes and improve the robustness of the model. During tracking, the candidate which is the most similar to the target model is chosen as the tracking result, and occlusion detection is added to reduce the influence of occlusion. Besides, the target model is updated automatically to avoid drifting. Experimental results show that the proposed method can maintain a robust tracking when the target appearance changes.
作者 黄丹丹 孙怡
出处 《计算机工程》 CAS CSCD 北大核心 2016年第9期226-234,共9页 Computer Engineering
关键词 视觉跟踪 目标建模 表观变化 模型更新 稀疏表示 贝叶斯推论 visual tracking target modeling appearance change model update sparse representation Bayesian inference
  • 相关文献

参考文献21

  • 1Wu Yi,Lim J, Yang M H. Online Object Tracking: A Benchmark~ C l//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA : IEEE Press, 2013 : 2411-2418.
  • 2Smeulders A W M,Chu D M, Cucchiara R, et al. Visual Tracking:An Experimental Survey [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(7) : 1442-1468.
  • 3Adam A, Rivlin E, Shimshoni I. Robust Fragments-based Tracking Using the Integral Histogram [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, USA : ACM Press ,2006:798-805.
  • 4Ross D A,Lim J, Lin R S, et al. Incremental Learning for Robust Visual Tracking I J 1 ~ International Journal of Computer Vision ,2008,77 ( 1 ) : 125-141.
  • 5Kwon J ,Lee K M. Visual Tracking Decomposition I C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE Press ,2010 : 1269-1276.
  • 6Danelljan M, Khan F S, Felsberg M, et al. Adaptive Color Attributes for Real-time Visual Tracking I C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA : IEEE Press, 2014 : 1090-1097.
  • 7Babenko B, Yang M H, Belongie S. Visual Tracking with Online Multiple Instance Learning [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE Press, 2009:983-990.
  • 8Kalal Z, Matas J, Mikolajczyk K. P-nLearning: Boot- strapping Binary Classifiers by Structural Constraints~ C ]// Proceedings of IEEE Conference on Computer Vision andPattern Recognition. San Francisco, USA : IEEE Press,2010: 49-56.
  • 9Li Xi,Shen Chunhua, Dick A, et al. Learning Compact Binary Codes for Visual Tracking [ C l//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE Press, 2013: 2419- 2426.
  • 10Zhang Tianzhu, Liu Si, Xu Chagnsheng, et al. Structural Sparse Tracking [ C 1//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA : IEEE Press, 2015 : 124-132.

二级参考文献25

  • 1Yilmaz A, Javed O, Shah M. Object tracking:a survey. ACM Computing Surveys (CSUR), 2006, 38(4):Article No. 13.
  • 2Wu Y, Lim J, Yang M H. Online object tracking:a benchmark. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA:IEEE, 2013. 2411-2418.
  • 3Smeulders A W M, Chu D M, Cucchiara R, Calderara S, Dehghan A, Shah M. Visual tracking:an experimental survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7):1442-1468.
  • 4Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In:Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA:IEEE, 2006. 798-805.
  • 5Kwon J, Lee K M. Visual tracking decomposition. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA:IEEE, 2010. 1269-1276.
  • 6Ross D A, Lim J, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77(1-3):125-141.
  • 7Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning. In:Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami FL, USA:IEEE, 2009. 983-990.
  • 8Kalal Z, Matas J, Mikolajczyk K. P-N learning:bootstrapping binary classifiers by structural constraints. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA:IEEE, 2010. 49-56.
  • 9Mei X, Ling H B. Robust visual tracking using L1 minimization. In:Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan:IEEE, 2009. 1436-1443.
  • 10Bao C L, Wu Y, Ling H B, Ji H. Real time robust L1 tracker using accelerated proximal gradient approach. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA:IEEE, 2012. 1830-1837.

共引文献4

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部