期刊文献+

“一锅法”生物转化富马酸制备L-天冬酰胺

L-asparagine production by one-pot biotransformation method
在线阅读 下载PDF
导出
摘要 L-天冬酰胺广泛应用于食品、医药、化工合成和微生物培养等领域。目前工业上主要依靠化学合成和直接提取方法制备。该研究首次采用双酶催化富马酸"一锅法"制备L-天冬酰胺。克隆来源于大肠埃希氏菌JM109的天冬酰胺合成酶A基因asn A,并于产L-天冬氨酸酶的E.coli CICC 11022S中表达,表达的蛋白分子质量约为37 k Da,与预期大小相符,比酶活力为1443.7 U/g。利用构建的工程菌E.coli CICC 11022S/p ET28a(+)-asn A全细胞高密度催化富马酸生产L-天冬酰胺,以高效液相色谱法及PITC柱前衍生-高效液相法检测底物、中间产物和终产物,转化10 h,富马酸转化率为94.7%,L-天冬酰胺产量可达125.1g/L,生产速率为12.51 g/(L·h)。 L-asparagine was one of natural amino acids, which was widely used in food, medicine, chemical syn- thesis, microbial culture and so on, and mainly obtained by chemical synthesis or direct extraction methods. In this study, one-pot reaction was reported to synthesize L-asparagine by two kinds of enzyme. Asparagine synthetase gene A (asnA) from Escherichia coli (E. coli) JM109 was amplified and transformed into E. coli CICC 11022S using molec- ular biological methods, and then the ASNA was expressed. The molecular weight of expressed protein was of about 37 kDa by SDS-PAGE, which was consistent with the expected size. After analyzing the ASNA activity, the enzyme activity was 1 443.7 U/g wet cell. Finally, the constructed strains E. coli CICC l1022S/pET28a ( + )-asnA was applied on conversion from fumaric acid to L-asparagine. After catalyzing for 10 h, the substrate and product were detected by PITC column derivatization-high performance liquid. The conversion ratio of fumaric acid was 94.7% , the yield of L-asparagine was up to 125.1 g/L, and the production rate was 12.51 g/(L · h).
出处 《食品与发酵工业》 CAS CSCD 北大核心 2016年第8期57-60,共4页 Food and Fermentation Industries
关键词 一锅法 富马酸 天冬酰胺合成酶 L-天冬酰胺 生物转化 one-pot reaction fumaric acid Asparagine synthetase A L-asparagine biotransformation
  • 相关文献

参考文献13

  • 1李健,查家华,万宇.化学合成L-天门冬酰胺的改进工艺.中国,CN95112751.1995-10-31.
  • 2张维燕,刘亚亚,刘旭平,范里,谭文松.谷氨酰胺和天冬酰胺对CHO细胞生长、代谢及抗体表达的影响[J].中国生物工程杂志,2014,34(4):9-15. 被引量:10
  • 3ZHANG J, FAN J, VENNETI S, et al. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion [J]. Molecular Cell, 2014, 56(2) :205 -218.
  • 4BURDA P, AEBI M. The dolichol pathway of N-linked glycosylation [J]. Biochimica et Biophysica Acta, 1999, 1 426(2) :239 -257.
  • 5IMPERIALI B, O'CONNOR S E. Effect of N-linked glyco- sylation on glycopeptide and Current Opinion in Chemical - 649. glycoprotein structure [ J ]. Biology, 1999, 3(6):643.
  • 6PATTERSON M C. Metabolic mimics:the disorders of N- linked glycosylation [ J]. Seminars in Pediatric Neurology, 2005, 12(3) :144 - 151.
  • 7詹谷宇,叶明,田萍.从草木樨芽提取天门冬酰胺[J].氨基酸和生物资源,1984,12(2):6-8. 被引量:2
  • 8黄宜基,周承文,翟元风,汪玲玲.L—天门冬氨酰胺一水合物的合成[J].氨基酸和生物资源,1984,12(2):4-5. 被引量:3
  • 9RICHARDS N G, SCHUSTER S M. Mechanistic issues in asparagine synthetase catalysis [J]. Advances in Enzymol- ogy and Related Areas of Molecular Biology, 1998, 72 (1) :145 -98.
  • 10OHASHI M, ISHIYAMA K, KOJIMA S, et al. Aspara- gine synthetasel, but not asparagine synthetase2, is re- sponsible for the biosynthesis of asparagine following the supply of ammonium to rice roots [ J]. Plant and Cell Physiology, 2015, 56(4) :769 - 778.

二级参考文献33

  • 1林深源,向文胜,范志金.除草剂靶酶—天冬酰胺合成酶特性及其抑制剂的研究进展[J].农药,2006,45(6):378-380. 被引量:7
  • 2Drews M,Doverskog M, Ohman L, et al.Pathways of glutamine metabolism in Spodoptera frugiperda(Sf9) insect cells: evidence for the presence of the nitrogen assimilation system, and a metabolic switch by1H/15N NMR. J Biotechnol,2000, 78:23-37.
  • 3Huang H, Yu Y, Yi X, et al., Nitrogen metabolism of asparagine and glutamate in Vero cells studied by 1H/ 15N NMR spectroscopy. Appl Microbiol Biotechnol, 2007. 77(2):427-436.
  • 4Xing Z, Kenty B, Koyrakh I, et al. Optimizing amino acid composition of CHO cell culture media for a fusion protein production. Process Biochemistry, 2011, 46(7): 1423-1429.
  • 5Lu F, Toh PC, Burnett I, et al. Automated dynamic fed-batch process and media optimization for high productivity cell culture process development. Biotechnology and Bioengineering, 2013, 110(1): 191-205.
  • 6Ozturk S S, Riley M R, Palsson B O. Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production. Biotechnology and Bioengineering, 1992, 39(4): 418-431.
  • 7Newland M, Kamal M N, Greenfield PF, et al. Ammonia inhibition of hybridomas propagated in batch, fed-batch, and continuous culture. Biotechnology and Bioengineering, 1994, 43(5): 434-438.
  • 8Yang M, Butler M. Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnology and Bioengineering, 2000, 68(4): 370-380.
  • 9Hyde R, Taylor P, Hundal H. Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem J, 2003, 373: 1-18.
  • 10Utsunomiya-Tate N, Endou H, Kanai Y. Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. Journal of Biological Chemistry, 1996, 271(25): 14883-14890.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部