期刊文献+

页岩水力压裂中多簇裂缝扩展的全耦合模拟 被引量:22

Fully coupled modeling for multiple clusters growth of hydraulic fractures in shale
在线阅读 下载PDF
导出
摘要 水平井和水力压裂是页岩气开发中的关键技术。对水力压裂中多簇裂缝同时扩展的物理过程进行了数值模拟。采用扩展有限元法(XFEM)模拟岩石中裂缝沿着任意路径扩展,采用有限体积法(FVM)模拟裂缝中流体的流动,并且考虑井筒中流体流动以及在各簇裂缝间的流量动态分配。通过牛顿迭代对全耦合物理过程进行数值求解,重点研究了初始长度不同的两条裂缝的扩展过程,证明较大的射孔摩阻能促进两条裂缝的同时扩展。并通过算例证明了本方法的精度和有效性。 Hydraulic fracturing in the horizontal wellbore is an effective technique in the development of shale gas. In this paper, the growth of multiple hydraulic fractures clusters is simulated numerically. The extended finite element method (XFEM) is adopted to model arbitrary propagation of the fractures in shale rock and the finite volume method (FVM) is used to discretize fluid flow in the fractures. The flow in horizontal wellbore and the dynamic distribution of the flow into different fracture clusters are consi- dered. The fully coupled field equations are solved by Newton iteration. Numerical examples are presented to validate the accuracy and efficiency of the method. The propagation paths of two hydraulic fractures are modeled to demonstrate that the larger perforation entry friction can promote simultaneous growth of multiple fracture clusters.
出处 《计算力学学报》 CAS CSCD 北大核心 2016年第4期643-648,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(11532008 11372157) 教育部博士点专项研究基金(20120002110075)资助项目
关键词 水力压裂 裂缝簇 扩展有限元 有限体积法 全耦合模拟 hydraulic fractures multiple fracture clusters extended finite element method finite volume method fully coupled model
  • 相关文献

参考文献18

  • 1庄茁,柳占立,王涛,高岳,王永辉,付海峰.页岩水力压裂的关键力学问题[J].科学通报,2016,61(1):72-81. 被引量:38
  • 2Baant Z P, Salviato M, Chau V T, et al. Why fracking works[J]. Journal of Applied Mechanics, 2014,81 (10) .. 101010.
  • 3Bunger A P, Gordeliy E, Detournay E. Comparison between laboratory experiments and coupled simula- tions of saucer-shaped hydraulic fractures in homoge- neous brittle-elastic solids[J]. Journal of the Me- chanics and Physics of Solids, 2013, 61 (7) : 1636- 1654.
  • 4Peirce A, Detournay E. An implicit level set method for modeling hydraulically driven fractures[J]. Com- puter Methods in Applied Mechanics and Enginee- ring, 2008,197 (33) .. 2858-2885.
  • 5Gordeliy E,Peiree A. Coupling schemes for modeling hydraulic fracture propagation using the XFEM[J]. Computer Methods in Applied Mechanics and Engi- neering, 2013,253 : 305-322.
  • 6Gordeliy E, Peiree A. Implicit level set schemes for modeling hydraulic fractures using the XFEM[J]. Computer Methods in Applied Mechanics and Engi- neering, 2013,266 : 125-143.
  • 7Gordeliy E,Peirce A. Enrichment strategies and con- vergence properties of the XFEM for hydraulic frac- ture problems [J]. Computer Methods in Applied Mechanics and Engineering, 2015,283:474-502.
  • 8Elbel J L, Piggott A R, Mack M G. Numerical mo- deling of multilayer fracture treatments[A]. Permian Basin Oil and Gas Recovery Conference[C]. Midland, Texas, 1992.
  • 9Mack M G,Elbel J L, Piggott A R. Numerical repre- sentation of multilayer hydraulie fraeturing [ A]. The 33th U. S. Symposium on Rock Meehanics (USRMS) [C]. Santa Fe,New Mexieo, 1992.
  • 10Leeampion B,Desroches J. Simultaneous initiation and growth of multiple radial hydraulic fractures from a horizontal wellbore[J]. Journal of the Mechanics and Physics of Solids, 2015,82 : 235-258.

二级参考文献25

  • 1陈勉,庞飞,金衍.大尺寸真三轴水力压裂模拟与分析[J].岩石力学与工程学报,2000,19(z1):868-872. 被引量:139
  • 2焦玉勇,张秀丽,刘泉声,陈卫忠.用非连续变形分析方法模拟岩石裂纹扩展[J].岩石力学与工程学报,2007,26(4):682-691. 被引量:62
  • 3庄茁,柳占立,成斌斌,等.扩展有限单元法[M].北京:清华大学出版社,2012.
  • 4Rahim Z, Holditch S A. The effects of mechanical properties and selection of completion interval upon the created and propped fracture dimensions in layered reservoirs[J]. J Pet Sci Eng, 1995, 13(1): 29-45.
  • 5PAN Pengzhi, FENG Xiating, XU Dingping, et al. Modelling fluid flow through a single fracture with different contacts using cellular automata [J]. Oamput Geotech, 2011, 38(8): 959-969.
  • 6Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing [J]. Int J Numer Meth Eng, 1999, 46(1): 131-150.
  • 7Belytsehko T, Fish J, Engelmann B E. A finite element with embedded localization zones [J]. Omrputer Method: in Applied Mechanics and Engineering, 1988, 70( 1 ) : 59 - 89.
  • 8Song J H, Areias P M A, P, elytschko T. A method for dynamic crack and shear band propagation with phantom nodes [J].Int J NumerMeth Eng, 2006, 67(6): 868-893.
  • 9Duan Q L, Song J H, Menouillard T, et al. Element local level set method for three-dimenslonal dynamic crack growth [J]. Int J Numer Meth Eng , 2009, 80(12): 1520- 1543.
  • 10Belytschko T, Ong J S-J, Wing K L, et al. Hourglass control in linear and nonlinear problems [J]. Computer Methods in Applied Mechanics aztd Engineering, 1984, 43(3): 251-276.

共引文献63

同被引文献405

引证文献22

二级引证文献349

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部