期刊文献+

TX-100和CTAB交换动力学的核磁共振研究 被引量:4

Exchange Kinetics of Surfactants TX-100 and CTAB Investigated by 1H NMR Spectroscopy
在线阅读 下载PDF
导出
摘要 运用核磁共振(NMR)方法分别测定了表面活性剂辛基苯聚氧乙烯醚(TX-100)和十六烷基三甲溴化铵(CTAB)在不同温度下的临界胶束浓度.阐述了应用1D NMR线型分析方法对表面活性剂快交换体系平均停留时间的定量测量.实验测量了TX-100和CTAB胶束溶液中表面活性剂分子在不同温度下的平均停留时间.结果显示,平均停留时间随温度的增加逐渐减小,说明TX-100和CTAB分子进出胶束的速率随温度的增加逐渐加快.利用阿伦尼乌斯公式拟合,获得了TX-100和CTAB的表观交换活化能,TX-100的表观交换活化能为17.6 k J/mol,CTAB的表观交换活化能为75.3 k J/mol.对TX-100和CTAB平均停留时间和表观交换活化能进行分析,得出平均停留时间和表观交换活化能与分子结构的关系:表观交换活化能反映的是疏水相互作用和静电斥力的大小;而平均停留时间不仅受活化能的影响,还与分子结构有关. The critical micelle concentration (CMC) of Triton X-100 (TX-100) andcetyltrimethylammonium bromide (CTAB) was measured by nuclear magnetic resonance(NMR) technologies at different temperature. The average residence time of TX-100 andCTAB were determined by one-dimensional line shape analysis. The average residencetime of both compounds decreased with increasing temperature, suggesting that the rate ofTX-100 and CTAB molecules entering/leaving the micelles increased with temperature.The apparent activation energy of the exchange process was calculated with the Arrheniusequation, and found to be 17.6 kJ/mol for TX-100 and 75.3 kJ/mol for CTAB. The apparentactivation energy likely reflected the strength of hydrophobic interaction; while the averageresidence time depended not only on the hydrophobic interaction but also on the molecularstructure.
出处 《波谱学杂志》 CAS CSCD 北大核心 2016年第3期422-431,共10页 Chinese Journal of Magnetic Resonance
基金 国家自然科学基金资助项目(21375145)
关键词 液体核磁共振(liquid NMR) 1D线型分析 表面活性剂 平均停留时间 表观交换活化能 liquid NMR, line shape analysis, surfactant, average residence time, apparentactivation energy
  • 相关文献

参考文献3

二级参考文献63

  • 1Fang X W, Zhao S, Mao S Z, et al. Mixed mieelles of cationic-nonionic surfaetant: NMR self-diffusion studies of triton X-100 and cetyl trimethyl ammonium bromide in aqueous solution[J]. Colloid Polym Sci, 2003, 281: 455-460.
  • 2Gao H C, Zhu R X, Yang X Y, et al. Properties of polyethylene glycol(23)lauryl ether with cetyltrimethylammonium bromide in mixed aqueous solutions studied by self-diffusion coefficient NMR[J]. J Colloid Interface Sci, 2004, 273: 626-631.
  • 3Wang T Z, Mao S Z, Miao X J, et al. ^1H NMR study of mixed micellization of sodium dodeeyl sulfate and Triton X-100[J]. J Colloid Interface Sci, 2001, 241 : 465-468.
  • 4Cui X H, Mao S Z, Liu M L, et al. Mechanism of surfactant micelle formation[J]. Langmuir, 2008, 24:10 771 - 10 775.
  • 5Lu X Y, Jiang Y, Cui X H, et al. NMR study of surfactant micelles transformation[J]. Acta Phys Chim Sin, 2009, 25(7): 1 357-1 361.
  • 6Barry B W, Morrison J C, Russel G F J, et al. Prediction of the critical micelle concentration of mixtures of alkyltrimethylammonium salts[J]. J Colloid Interface Sci, 1970, 33: 554- 561.
  • 7Holland P M, Rubingh D N. Nonideal multieomponent mixed micelle model[J]. J Phys Chem, 1983, 87:1 984 - 1 990.
  • 8Santanu P. The mixing behavior of n-alkylpyridinium bromide-NP-9 mixed surfactant systems[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281:113-118.
  • 9Clint J H. Micellization of mixed nonionic surface active agents[J]. J Chem Soc A, 1975, 71 : 1 327-1 334.
  • 10Rubingh D N. Solution Chemistry of Surfaetants[M]. New York, Plenum Press, 1979.

共引文献13

同被引文献8

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部