期刊文献+

深度学习中的无监督学习方法综述 被引量:52

Introduction of Unsupervised Learning Methods in Deep Learning
在线阅读 下载PDF
导出
摘要 从2006年开始,深度神经网络在图像/语音识别、自动驾驶等大数据处理和人工智能领域中都取得了巨大成功,其中无监督学习方法作为深度神经网络中的预训练方法为深度神经网络的成功起到了非常重要的作用.为此,对深度学习中的无监督学习方法进行了介绍和分析,主要总结了两类常用的无监督学习方法,即确定型的自编码方法和基于概率型受限玻尔兹曼机的对比散度等学习方法,并介绍了这两类方法在深度学习系统中的应用,最后对无监督学习面临的问题和挑战进行了总结和展望. Since 2006, Deep Neural Network has achieved huge access in the area of Big Data Processing and Artificial Intelligence, such as image/video discriminations and autopilot. And unsupervised learning methods as the methods getting success in the depth neural network pre training play an important role in deep learning. So, this paper attempts to make a brief introduction and analysis of unsupervised learning methods in deep learning, mainly includs two types, Auto-Encoders based on determination theory and Contrastive Divergence for Restrict Boltzmann Machine based on probability theory. Secondly, the applications of the two methods in Deep Learning are introduced. At last a brief summary and prospect of the challenges faced by unsupervised learning methods in Deep Neural Networks are made.
出处 《计算机系统应用》 2016年第8期1-7,共7页 Computer Systems & Applications
基金 国家重点基础研究发展计划(973)(2012CB315901)
关键词 自编码 受限玻尔兹曼机 无监督学习 深度学习 神经网络 auto-encoders restrict boltzmann machine unsupervised learning deep learning neural network
  • 相关文献

参考文献27

  • 1Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc. of the National Academy of Sciences of the United States of America, 1982, 79(8): 2554-2558.
  • 2Rumelhart D, Hinton GE, William R. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533-536.
  • 3Hinton GE, Salakhutdinov R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(7): 504-507.
  • 4Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, eds. Proc. of the Advances in Neural Information Processing Systems. Lake Tahoe: Neural Information Processing Systems Foundation. 2012. 1106-1114.
  • 5Deng J, Berg A, Satheesh S. Large scale visual recognition challenge, http://www.image-net.org/challenges/LSVRC/2012/ index, 2013.
  • 6Perronnin F, Snchez J, Mensink T. Improving the fisher kernel for large-scale image classification. Proc. of the European Conference on Computer Vision. Crete: Springer Berlin Heidelberg. 2010. 6314. 143-156.
  • 7余凯,贾磊,陈雨强,徐伟.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804. 被引量:627
  • 8郑胤,陈权崎,章毓晋.深度学习及其在目标和行为识别中的新进展[J].中国图象图形学报,2014,19(2):175-184. 被引量:147
  • 9Jose CA. Fast On-line alogrithm for PCA and its convergence characteristic. IEEE Trans. on Neural Network, 2000, 4(2): 299-307.
  • 10Tenenbanm JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319-2323.

二级参考文献276

  • 1MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 2MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 3李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 410 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 5Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 6Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 7Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 8Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 9LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.
  • 10Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)[OLJ.[2013-08-01J. http://www. image?net.org/challenges/LSVRC/2012/.

共引文献1407

同被引文献495

引证文献52

二级引证文献258

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部