期刊文献+

α和高斯噪声背景下线性极化阵列波达方向和极化参数联合估计的FLOCC-SMN方法 被引量:2

FLOCC-SMN method for DOA polarization parameters estimation of linear polarization array inαand Gaussian noise
在线阅读 下载PDF
导出
摘要 针对α和高斯混合噪声背景下的线性极化阵列波达方向和极化参数估计问题,提出了一种基于分数低阶循环相关的子空间-最小范数方法。该方法针对α稳定分布过程的特点,利用信号的循环平稳特性,克服了传统的基于二阶矩或高阶累积量无法用于α噪声背景的缺点,弥补了分数低阶矩对循环平稳干扰信号抑制能力的不足。所采用的子空间-最小范数方法不仅减少了传统MUSIC方法的计算量,而且有效地抑制了分数低阶循环相关函数的估计误差。仿真结果表明,本文算法对α和高斯混合噪声及循环平稳干扰信号的抑制能力明显优于分数低阶矩方法。 A fractional lower order cyclic correlation-based subspace minimum norm method was proposed for the joint estimation of Directions-of-arrival(DOA)and polarization parameters of linear polarization array under mixed noise ofαand/or Gaussian noise.Considering the characteristics ofαstable distribution and using the cycle stationarity of signals,the proposed method overcomes the disadvantages of the traditional second order moment or high order cumulant-based methods,which can not by used underα noise.Using the fractional lower order cyclic correlation method,the proposed method makes up for the lack of cycle stationary disturbance suppression of the traditional fractional lower order moment method.The subspace minimum norm method used in this paper can effectively reduce the computation of the traditional MUSIC method and suppress the estimation errorof the fractional lower order cyclic correlation function.Simulation results show that the proposed method is superior to the fractional lower order moment-based method for the suppression of the cycle stationary disturbance and the mixed noise of and Gaussian noise.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第4期1297-1303,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61571209)
关键词 通信技术 极化阵列 稳定分布 最小范数 极化参数 波达方向 communications polarization array stable distribution minimum norm polarization parameter direction of arrival(DOA)
  • 相关文献

参考文献9

  • 1单泽彪,石要武,刘小松,李新波.时变遗忘因子动态DOA跟踪算法[J].吉林大学学报(工学版),2016,46(2):632-638. 被引量:5
  • 2杨巍,石要武.基于分数阶傅里叶变换的宽带Chirp信号的波达方向角估计[J].吉林大学学报(工学版),2014,44(3):818-821. 被引量:3
  • 3Shao M, Nikias C L. Signal processing with frac- tional lower order moments: stable processes and their applications [J]. Proceedings of the 1EEE, 1993, 81(7): 986-1010.
  • 4Shao M, Nikias C L. Detection and adaptive estima- tion of stable processes with fractional lower-order moments[C]//IEEE Sixth SP Workshop on Statisti- cal Signal and Array Processing,Victoria, BC, 1992 : 94-97.
  • 5Tsakalides P, Nikias C L. The robust covariation- based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments [J]. IEEE Transactions on Signal Processing, 1996, 44 (7) : 1623-1633.
  • 6Samorodnitsky G, Taqqu M S. Stable non-Gaussian random processes., stochastic models with infinite variance[J]. Bulletin of the London Mathmatieal So- ciety, 1996,28 (134) : 554-555.
  • 7Liu T H, Mendel J M. A subspace-based direction finding algorithm using fractional lower order statis- ties[J]. IEEE Transactions on Signal Processing, 2001, 49(8): 1605-1613.
  • 8Wong K T, Zoltowski M D. Closed-form direction- finding with arbitrarily spaced electromagnetic vec- tor-sensors at unknown locations [C] // Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Seattle, WA, 1988: 1949-1952.
  • 9Chambers J M, Mallows C L, Stuck B W. A meth- od for simulating stable random variables[J]. Jour- nal of the American Statistical Association, 1976, 71(354) : 340-344.

二级参考文献31

  • 1Wang H, Kaveh M. Coherent signal-subspace pro- cessing for the detection and estimation of angles of arrival of multiple wide-band sources [J]. IEEE Transaction on Acoustics, Speech and Signal Processing, 1985, 33(4)..823-831.
  • 2Krolik J, Swingler D N. Multiple wide-band source location using steered covariance matrices[J]. IEEE Transaction on Signal Processing, 1989, 37 (10):1481-1494.
  • 3Hung H,Kaveh M. Focusing matrices for coherent signal-subspace processing[J]. IEEE Transaction on Acoustics, Speech and Signal Processing, 1988, 36 (8): 1272-1281.
  • 4Valaee S,Kabal P. Wideband array processing using a two-sided correlation transformation [J]. IEEE Transaction on Signal Processing, 1995, 43(1):160- 172.
  • 5Valaee S, Kabal P. A unitary transformation algorithm for wideband array processing[C]// IEEE Sixth SP Workshop on Statistical Signal and Array Processing, Victoria, BC, 1992 : 300-303.
  • 6Pal P,Vaidyanathan P P. A novel autofocusing approach for estimating directions-of-arrival of wide-band signals[C] // 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2009: 1663-1667.
  • 7Doron M A, Weiss A J. On focusing matrices for wide-band array processing [J]. IEEE Transaction on Signal Processing, 1992, 40(6): 1295-1302.
  • 8Liu Zhi-qiang, Gao Xiao-guang, Ma Hong-guang. JDF and SJDF: two DOA estimators for wideband jamming[C]//2010 IEEE 10th International Confer- ence on Signal Processing, Beijing, China, 2010: 327-331.
  • 9Namias V. The fractional order Fourier transform and its application to quantum mechanics[J]. Journal of Applied Mathematics, 1980, 25(3):241-265.
  • 10Zhao Fen-xia,Zhai Xin-duo. The algorithm and error analysis of fractional Fourier transform[C]//2010 2nd International Conference on Information Engineering and Computer Science, Wuhan, China, 2010 : 1-4.

共引文献6

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部