期刊文献+

乳腺冠状面超声影像特征的临床诊断价值 被引量:1

Diagnostic value of three dimensional breast ultrasound coronal imaging features
原文传递
导出
摘要 目的:探究全自动乳腺超声冠状面影像的诊断价值。方法选取2010年6月至2012年12月来本院就诊的病例1100例,根据BI-RADS第5版超声术语和相关文献选取影像特征并进行筛选,采用Logistic回归分别以筛选后横切面和横切面结合冠状面影像特征与病理诊断结果建立诊断模型。结果单因素分析显示肿物回声、形状、方向、边界、钙化、后方回声、冠状面汇聚征、冠状面边界差异均有统计学意义。在仅有横切面因素时所建诊断模型AUC为0.862(95%CI:0.838~0.886),而纳入冠状面特征因素后则提高至0.910(95%CI:0.892~0.928),经过Z检验证实差异有统计学意义(P〈0.001)。结论加入冠状面影像特征后的诊断模型诊断效率提高,说明冠状面影像特征可以在判断病灶良恶性中提供额外信息。 Objective To explore the diagnostic value of coronal imaging of three dimensional breast ultrasound. Methods 1 100 women patients from June 2010 to December 2012 admitted into our hospital were included in the study. Based on the fifth edition of BI-RADS ultrasound lexicon and related literature,features of imaging in both transverse and coronal planes were selected and their statistical significance was assessed. Diagnostic models were established using Logistic regression analysis as one consisted only of features on the transverse plane and the other on both planes. Results AUC of the diagnostic model with transverse imaging features was 0.862(95%CI:0.838-0.886)and was improved to 0.910(95%CI:0.892-0.928)after addition of coronal features. The difference between the two AUCs analyzed using Z test and the P value was less than 0.001. Conclusion Characteristics in the coronal plane help to improve diagnostic efficiency with providing additional information for differentiating benign from malignant lesions.
出处 《中华普通外科学文献(电子版)》 2016年第3期195-199,共5页 Chinese Archives of General Surgery(Electronic Edition)
关键词 乳腺肿瘤 超声检查 模型 结构 Breast neoplasms Ultrasonography Model,structural
  • 相关文献

参考文献19

  • 1Crystal P, Strano SD, Sheharynski S, et al. Using sonography to screen women with mammographically dense breasts[J]. AJR Am J Roentgenol, 2003, 181(1): 177-182.
  • 2Berg WA, Blume JD, Cormack JB, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer: results of the first-year screen in ACRIN 6666[J]. JAMA, 2008, 299(18): 2151-2163.
  • 3Skaane P, Engedal K. Analysis of sonographic features in the dif- ferentiation of fibroadenoma and invasive ductal carcinoma[J]. A JR Am J Roentgenol, 1998, 170(1): 109-114.
  • 4Li N, Jiang YX, Zhu QL, et al. Accuracy of an automated breast volume ultrasound system for assessment of the pre-operative extent of pure ductal carcinoma in situ: comparison with a conventional handheld ultrasound examination[J]. Ultrasound Med Biol, 2013, 39(12): 2255-2263.
  • 5Clauser P, Londero V, Como G, et al. Comparison between different imaging techniques in the evaluation of malignant breast lesions: can 3D ultrasound be useful?[J]. Radiol Med, 2014, 119(4): 240-248.
  • 6Watermann DO, FOLDI M, Hanjalic-Beck A, et al. Three-dimensional ultrasound for the assessment of breast lesions[J]. Ultrasound Obstet Gynecol, 2005, 25(6): 592-598.
  • 7Kim H, Cha JH, Oh HY, et al. Comparison of conventional and automated breast volume ultrasound in the description and character- ization of solid breast masses based on BI-RADS features[J]. Breast Cancer, 2014, 21(4): 423-428.
  • 8Mendelson EB, Bohm-Velez M, Berg WA, et al. ACR BI-RADS Uhrasound. In: ACR BI-RADS Atlas, Breast Imaging Reporting and Data System[M/CD]. Reston, VA, American College of Radiology, 2013.
  • 9Chon N, Moon WK, Cha JH, et al. Differentiating benign from malignant solid breast masses: comparison of two-dimensional and three-dimensional US[J]. Radiology, 2006, 240(1): 26-32.
  • 10Costantini M, Belli P, Lombardi R, et al. Characterization of solid breast masses:use of the sonographic breast imaging reporting and data system lexicon[J]. J Ultrasound Med, 2006, 25(5): 649-659.

二级参考文献14

  • 1American College of Radiology BI-RADS. Breast imaging reporting and data system : mammography, breast ultrasound, magnetic resonance imaging. 4th ed. Reston VA: American College of Radiology, 2003:256-258.
  • 2Hollenhorst M, Hansen C, Htittebrauker N, et al. Ultrasound computed tomography in breast imaging: first clinical results of a custom-made scanner. Uhraschall Med, 2010, 31:604-609.
  • 3Tozaki M, Fukuma E. Category assessment based on 3D volume data acquired by automated breast uhrasonography. Jpn J Radiol, 2012, 30:185-191.
  • 4Yoon JH, Kim MJ, Moon HJ, et al. :egorization of ultmsono:aphic BI-RADS category 4 : positive predictive value and clinical factors affecting it. Ultrasound Med Biol, 2011, 37:693-699.
  • 5Back SE, Kim MJ, Kim EK, eta/. Effect of clinical information on diagnostic performance in breast sonography. J Ultrasound Med, 2009, 28:1349-1356.
  • 6Del Frate C, Bestagno A, Cerniato R, et al. Sonographic criteria for differentiation of benign and malignant solid breast lesions : size.is of value. Radiol Med, 2006, 111:783-796.
  • 7Linda A, Zuiani C, Lorenzon M, et al. Hyperechoic lesions of the breast: not always benign. AJR Am J Roentgenol, 2011, 196: 1219-1224.
  • 8Dummin LJ, Cox M, Plant L. Prediction of breast tumor size by mammography and sonography: a breast screen experience. Breast, 2007, 16:38-46.
  • 9Lin X, Wang J, Han F, et al. Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound. Eur J Radiol, 2012, 81 : 873 -878.
  • 10Zhang J, I,ai XJ, Zhu QL, et al. Interobserver agreement for sonograms of breast lesions obtained by an automated breast volume scanner. Eur J Radiol, 2012, 81:2179-2183.

共引文献8

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部