摘要
针对传统Android恶意应用检测方法在处理大规模样本时存在的训练时间长、存储空间消耗大的问题,提出一种基于增量学习SVM的Android恶意应用检测方法.该方法提取Android应用的权限申请和API函数调用特征,利用增量学习SVM理论将训练样本集随机划分为初始样本集和若干个增量样本集,利用循环迭代方法训练SVM分类器,每次新的训练仅保留上一轮训练得到的支持向量集并合并到新增样本集中,舍弃大量对分类结果不产生影响的样本以提高分类器学习效率,同时产生新的支持向量集,并最终得到一个高精度的SVM分类器.通过将增量学习SVM算法与常规SVM算法进行对比实验,结果表明,该算法可以有效降低分类器学习时间,减少样本存储的空间占用,同时随着样本规模的积累逐步提高分类精度.
出处
《通化师范学院学报》
2016年第6期66-69,共4页
Journal of Tonghua Normal University
基金
安徽省高校质量工程项目(2015jxtd074)
安徽省高校质量工程项目(2015zy104)