期刊文献+

内壁涂覆石墨烯的双椭圆中空表面等离子波导

Double Elliptical Hollow Surface Plasmonic Waveguide Coated with Graphene on the Inner Wall
原文传递
导出
摘要 本文设计了一种内壁涂覆单层石墨烯的双椭圆形中空表面等离子波导,采用有限元的方法对其传输特性进行了研究。结果表明,椭圆之间的距离和半短轴的长度增大时,有效折射率的实部减小,传输距离增大,模式面积减小;圆化半径增大时,有效折射率的实部增大,传输距离减小,模式面积增大;工作频率增大时,有效折射率的实部减小,传输距离减小,模式面积减小;温度升高时,有效折射率先增大后减小,传输距离减小,模式面积减小。本文的工作为研究基于石墨烯的波导器件提供了理论依据。 In this paper,a kind of double elliptical hollow surface plasmonic waveguide coated with a single layer of graphene on the inner wall was proposed.The propagation properties were studied with the finite element method.Its results showed that,when the distance between two ellipses and the elliptical semi minor axis increased,the effective refractive index decreased,while the propagation length increased,and the mode area decreased.When the radius of cohesive arc increased,the effective refractive index increased,the propagation length decreased,and the mode area increased.When the working frequency was higher,the effective refractive index was smaller,while the propagation length was shorter,and the mode area was the smaller.When the temperature was higher,the effective refractive index increased before fell down,while the propagation length was shorter,and the mode area was smaller.This work may provide a theoretical basis for the waveguide devices based on graphene material.
出处 《量子光学学报》 北大核心 2016年第2期170-179,共10页 Journal of Quantum Optics
基金 国家自然科学基金(61178013 61172045) 国家基础科学人才培养基金(J1103210)
关键词 表面光学 传输特性 表面等离子体 石墨烯 optics at surfaces propagation properties surface plasmonic graphene
  • 相关文献

参考文献20

  • 1Raether H.Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M].New York:Springer-Verlag,1988.
  • 2Shih-Hui C,Stephen G,George S.Surface Plasmon Generation and Light Transmission by Isolated Nanoholes and Arrays of Nanoholes in Thin Metal Films[J].Optics Express,2005,13(8):3150-3165.DOI:10.1364/OPEX.13.003150.
  • 3Pile D F P,Ogawa T,Gramotnev D K,et al.Two-dimensionally Localized Modes of a Nano-scale Gap Plasmon Waveguide[J].Applied Physics Letters,2005,87(26):261114-261114-3.DOI:10.1063/1.2149971.
  • 4Pile D F P,Ogawa T,Gramotnev D K,et al.Theoretical and Experimental Investigation of Strongly Localized Plasmons on Triangular Metal Wedges for Subwavelength Waveguiding[J].Applied Physics Letters,2005,87(6):061106-061106-3.Doi:10.1063/1.1991990.
  • 5Novoselov KS,Geim AK,Morozov SV,et al.Electric Field Effect in Atomically Thin Carbon Films[J].Science,2004,306(5696):666-669.DOI:10.1126/science.1102896.
  • 6Geim AK,Novoselov KS.The Rise of Graphene[J].Nature Material,2007,6(3):183-191.DOI:10.1038/nmat1849.
  • 7Javier F,García de Abajo.Graphene Plasmonics:Challenges and Opportunities[J].ACS Photonics,2014,1(3):135-152.DOI:10.1021/ph400147yJ.
  • 8Koppens FH,Chang DE,García de Abajo FJ.Graphene Plasmonics:a Platform for Strong Light Matter Interactions[J].Nano Lett.2011(8):3370-3377.DOI:10.1021/nl201771h.
  • 9Nikitin A Y,Guinea F,García-Vidal F J,et al.Edge and Waveguide THz Surface Plasmon Modes in Graphene Microribbons[J].Physical Review B,2011,84(16):1401-1408.DOI:10.1103/PhysRevB.84.161407.
  • 10Christensen J,Manjavacas A,Thongrattanasiri S,et al.Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons[J].Acs Nano,2011,6(1):431-440.DOI:10.1021/nn2037626.

二级参考文献20

  • 1K S Novoselov, A K Geim, S V Morozov, et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666- 669.
  • 2F Javier Garcfa de Abajo. Graphene plasmonics: Challenges and opportunities[J]. ACS Photonics, 2014, 1(3): 135-152.
  • 3A K Geim , K S Novoselov. The rise of graphene[J]. Nature Material, 2007, 6(3): 183-191.
  • 4F H Koppens, D E Chang, F J Garcia de Abajo. Graphene plasmonics: A platform for strong lightmatter interactions[J]. Nano Lett, 2011 11(8): 3370-3377.
  • 5A Vakil, N Engheta. Transformation optics using graphene[J]. Science, 2011,332(6035): 1291-1294.
  • 6M Jahlan, H Buljan, M Soljaoie, et al.. Plasmonies in graphene at infrared frequeneies[J]. Phys Rev B, 2009, 80(24): 245435.
  • 7Q Bao, K P Loh. Graphene photonies, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 2012, 6(5): 3677-3694.
  • 8F Bonaecorso, Z Sun, T Hasan, et al.. Graphene photonics and optoelectronics[J], Nat Ptotonics, 2010, 4(9): 611-622.
  • 9J Lao, J Tao, Q J Wang, et al.. Tunable graphene-based plasmonic waveguides: Nano modulators and nano attenuators[J]. Laser & Photonics Reviews, 2014, 8(4): 569-574.
  • 10A Y Nikitin, F Guinea, F J Garcia-Vidal, et al.. Edge and waveguide terahertz surface plasmon modes in graphene micro-ribbons[J]. Phys Rev B, 2011, 84(16): 161407.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部