期刊文献+

水平轴风力机叶片优化设计方法 被引量:12

OPTIMUM DESIGN METHOD OF HORIZONTAL-AXIS WIND TURBINE BLADE
在线阅读 下载PDF
导出
摘要 为避免风力机叶片设计陷入局部最优解,通过Bezier参数化曲线定义叶片弦长及扭角分布规律,采用遗传算法优化曲线控制点位置,以年发电量最大为优化目标,全局寻优叶片外形参数,并与Wilson设计叶片比较。分别计算两种设计叶片在额定风况及变风况下的气动性能,结果表明:通过遗传算法设计的叶片弦长、扭角更小;额定风况下,遗传算法设计叶片推力系数更小,最大功率系数更大;变风况下,两种设计叶片输出功率相差不大,但Wilson设计叶片的叶根弯矩和风轮推力更大,整个工作风速区平均为4.7%和7.3%。 In order to avoid local optimal solution of wind turbine blade which is designed based on Wilson theory, define the chord and twist angle distributions by Bezier curve. Maximize annual generating capacity as the goal to get the optimal blade design parameters and compared with Wilson' s, and then calculate the aerodynamic performance of these two blades in variable wind speeds. Results illustrated that the chords and twist angles of the blade designed by genetic algorithm are smaller than Wilson' s ; In rated wind speed, the blade designed by genetic algorithm had smaller thrust coefficients and a higher max power coefficient. In variable wind speeds, there' s little difference in output power between these two blades, but Wilson' s have higher root bending moment and rotor thrust about 4.7% and 7.3%.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2016年第5期1107-1113,共7页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(E51176129) 上海市教育委员会科研创新(重点)项目(13ZZ120 13YZ066) 教育部高等学校博士学科点专项科研基金(博导类)(20123120110008) 上海市研究生创新基金(JWCXSL1402)
关键词 水平轴风力机 叶片 气动优化 遗传算法 horizontal axis wind turbine blade aerodynamic optimization genetic algorithm
  • 相关文献

参考文献13

  • 1Glauert H. Aerodynamic theory [ M ]. Berlin: Heidelberg Springer, 1935, 169--360.
  • 2Wilson R E, Lissaman P B S, Walker S N. Aerodynamic performance of wind turbines [ M]. Corvallis, Oregon- Oregon State University, 1976.
  • 3Bavanish B, Thyagarajan K. Optimization of power coefficient on a horizontal axis wind turbine using bem theory[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 169--182.
  • 4Fischer G R, Kipouros T, Savill A M. Multi-objective optimisation of horizontal axis wind turbine structure and energy production using aerofoil and blade properties as design variables[J]. Renewable Energy, 2014, 62: 506---515.
  • 5Vese] R W Jr, McNamara J J. Performance enhancement and load reduction of a 5 MW wind turbine blade[J]. Renewable Energy, 2014, 66: 391--401.
  • 6刘雄,陈严,叶枝全.遗传算法在风力机风轮叶片优化设计中的应用[J].太阳能学报,2006,27(2):180-185. 被引量:29
  • 7傅洁,何斌,张慧玲,范钦珊.基于片条理论和遗传算法的风力机叶片全局优化设计[J].中南大学学报(自然科学版),2012,43(8):3025-3030. 被引量:8
  • 8Griffin D A. WindPACT turbine design scaling studies technical area 1-Composite blades for 80-to 120-meter rotor [ R]. Technical report, National Renewable Energy Laboratory, NREL/SR-500-29492, Golden, CO. A. 2.1, 2001.
  • 9郭旺柳,宋文萍,侯银珠.风力机翼型全流向气动特性估算[J].太阳能学报,2012,33(5):717-722. 被引量:2
  • 10Viterna L A, Corrigan R D. Fixed pitch rotor performance of large horizontal axis wind turbines [J]. Large Horizontal-Axis Wind Turbines, 1982, 1: 69-- 85.

二级参考文献26

  • 1刘洁,杨爱明,翁培奋.基于遗传算法的微型飞行器气动力优化设计[J].空气动力学学报,2005,23(2):173-177. 被引量:10
  • 2刘雄,陈严,叶枝全.水平轴风力机气动性能计算模型[J].太阳能学报,2005,26(6):792-800. 被引量:105
  • 3Mitsuo Gen, Cheng Runwei. Genetic algorithms and engineering optimization (engineering design and automation)[M]. Wiley-interscience, 1999.
  • 4Robert E Wilson, Peter B S Lissaman, Stel N Walker. Aerodynamic performance of wind turbines [ M ]. Department of Mechanical Engineering, Oregon State University, 1976.
  • 5Det Norske Veritas, Risφ National Laboratory. Guidelines for design of wind turbines [ M ]. Det Norske Veritas and Risφ National Laboratory, 2002.
  • 6Molenaar, David-P, Sjoertl Dijkstra. State-of-the-Art of wind turbine design codes: main features overview for cost-effective generation [ J ]. Wind Engineering, 1999, 23 ( 5 ) :295-311.
  • 7Spera D A. Wind turbine technology [ M ]. New York:ASME Press, 1994.
  • 8Morgan C A, Garrad D. The design of optimum rotors for horizontal axis wind turbines [R]. London: Garrad Hassan and Partners, 1998.
  • 9Giguere P, Selig M S. Blade design trade-offs using low-lift airfoils for stall-regulated HAWTs [ C ]. Proceeding of ASME/AIAA Wind Energy Symposium, Reno, Nevada Jan,1999.
  • 10Georges Harik. Linkage learning via probabilistic modeling in the ECGA [R]. IlliGAL Report: 99010, 1999.

共引文献34

同被引文献100

引证文献12

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部