摘要
The linear and nonlinear torsional free vibration analyses of functionMly graded micro/nuno-tubes (FGMTs) are analytically investigated based on the couple stress theory. The employed non-classical continuum theory contains one material length scale parameter, which can capture the small scale effect. The FGMT model accounts for the through-radius power-law variation of a two-constituent material. Hamilton's principle is used to develop the non-classical nonlinear governing equation. To study the effect of the boundary conditions, two types of end conditions, i.e., fixed-fixed and fixed-free, are considered. The derived boundary value governing equation is of the fourthorder, and is solved by the homotopy analysis method (HAM). This method is based on the Taylor series with an embedded parameter and is capable of providing very good approximations by means of only a few terms, if the initial guess and the auxiliary linear operator are properly selected. The analytical expressions are developed for the linear and nonlinear natural frequencies, which can be conveniently used to investigate the effects of the dimensionless length scale parameter, the material gradient index, and the vibration amplitude on the natural frequencies of FGMTs.
The linear and nonlinear torsional free vibration analyses of functionMly graded micro/nuno-tubes (FGMTs) are analytically investigated based on the couple stress theory. The employed non-classical continuum theory contains one material length scale parameter, which can capture the small scale effect. The FGMT model accounts for the through-radius power-law variation of a two-constituent material. Hamilton's principle is used to develop the non-classical nonlinear governing equation. To study the effect of the boundary conditions, two types of end conditions, i.e., fixed-fixed and fixed-free, are considered. The derived boundary value governing equation is of the fourthorder, and is solved by the homotopy analysis method (HAM). This method is based on the Taylor series with an embedded parameter and is capable of providing very good approximations by means of only a few terms, if the initial guess and the auxiliary linear operator are properly selected. The analytical expressions are developed for the linear and nonlinear natural frequencies, which can be conveniently used to investigate the effects of the dimensionless length scale parameter, the material gradient index, and the vibration amplitude on the natural frequencies of FGMTs.