期刊文献+

利用全局方法进行泊松前景提取 被引量:1

Using Global Method to Extract Poisson Foreground
在线阅读 下载PDF
导出
摘要 图像前景提取是运用图像处理算法快速准确地提取出图像中人们感兴趣的目标。图像前景提取的精度直接影响了对目标图像的后续处理。为了提高图像前景提取的精度,提出了一个新的利用全局方法进行Poisson前景提取的算法。为了能够更快更好地得到最优采样点,提出了扩散、搜索的方法,并对该方法的有效性和精确性进行了分析。扩散方法是通过在较小的邻域内计算各采样点的代价寻找代价最小的采样点,它能够得到邻近区域的最优解;搜索方法是通过一定的规则跳跃式地寻找最优采样点,它能够加快寻找最优采样点的速度。实验表明,基于全局的Poisson前景提取算法会得到更精确的前景提取结果。 The image foreground extraction is using image processing algorithms to quickly and accurately extract the target image that people are interested in. The precision of image foreground extraction directly affects the subsequent processing of target image. In order to improve the accuracy of image foreground extraction, this paper proposes a new Poisson matting algorithm using global method. In order to improve the speed, this paper uses a diffusion-search method, and analyzes the effectiveness and accuracy of the algorithm. Diffusion method is to find the least cost sampling points by calculating the cost of each sampling point in a small neighborhood, it can obtain the optimal solution adjacent areas; Search method is to find the optimal sampling point by certain rules, it can acceler- ate the speed to find the optimal sampling point. Finally, the experiment proves that Poisson extraction algorithm based on global foreground will get more accurate results for foreground extraction.
出处 《计算机科学与探索》 CSCD 北大核心 2016年第5期688-698,共11页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61300096 中央高校基本科研业务费专项基金No.N130404013~~
关键词 泊松算法 前景提取 全局算法 Poisson algorithm foreground extraction global algorithm
  • 相关文献

参考文献16

  • 1Porter T,Duff T. Compositing digital images[J]. ComputerGraphics, 1984,18(3): 253-259.
  • 2Pham D L, Xu Chenyang, Prince J L. Current methods inmedical image segmentation[J]. Annual Review of Biomed-ical Eengineering, 2000, 2(1): 315-337.
  • 3Boykov Y, Jolly M- P. Interactive graph cuts for optimalboundary region segmentation of objects in N-D images[C]//Proceedings of the 2001 International Conference onComputer Vision, Vancouver, Canada, Jul 2001: 105-112.
  • 4Wang Li, Li Chunming, Sun Quansen, et al. Active contoursdriven by local and global intensity fitting energy withapplication to brain MR image segmentation[J]. ComputerizedMedical Imaging and Graphics, 2009, 33(7); 520-531.
  • 5Wang Pei. Research and improvement on the foregroundextraction algorithms[D], Xi'an: Xidian University, 2012.
  • 6Shahrian E, Raj an D. Weighted color and texture sample se-lection for image matting[C]//Proceedings of the 2012IEEE Conference on Computer Vision and Pattern Recogni-tion, Providence, USA, Jun 16-21, 2012. Piscataway, USA:IEEE, 2012: 718-725.
  • 7He Bei, Wang Guijin, Ruan Zhiwei, et al. Local mattingbased on sample- pair propagation and iterative refinement[C]//Proceedings of the 2012 19th IEEE International Con-ference on Image Processing, Orlando, USA, Sep 30-0ct 3,20!2. Piscataway, USA: IEEE, 2012: 285-288.
  • 8Jin Meiguang, Kim B-K, Song W-J. Adaptive propagation-based color-sampling for Alpha matting[J]. IEEE Transac-tions on Circuits and Systems for Video Technology, 2014,24(7): 1101-1110.
  • 9Zeng Ziniing, Wang Jue, Tiddeman B, et al. Unsuperviscdtumour segmentation in PET using local and global intensity-fitting active surface and alpha matting[J]. Computers inBiology and Medicine, 2013, 43( 10): 1530-1544.
  • 10Xue Jianru, Wang Le, Zheng Nanning, et al. Automatic sa-lient object extraction with contextual cue and its applica-tions to recognition and alpha matting[J]. Pattern Recogni-tion, 2013,46(11): 2874-2889.

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部