期刊文献+

基于遗传算法的支持向量机的参数优化 被引量:9

Parameters Optimization of SVM Based on Genetic Algorithm
在线阅读 下载PDF
导出
摘要 支持向量机的性能主要受到核函数的参数和惩罚因子的影响,其中,以高斯核函数作为支持向量机的核函数的应用最为广泛。论文在研究了惩罚参数C及高斯核函数参数σ对支持向量机分类性能影响的基础上,利用网格搜索法和遗传算法对基于RBF核的SVM进行了参数优化,并通过UCI数据集进行了验证。实验结果显示,遗传算法相较于网格搜索算法具有更快的搜索速度,在实际运用中更加高效。 The performance of SVM is mainly affected by the kernel function parameters and penalty parameter.SVM with RBF kernel function is the most widely applications.Using genetic algorithm to select optimum parameter,the paper mainly studies the performance of SVM with penalty parameter C and RBF kernel function parameterσ.Comparing grid search with genetic algorithm for optimum parameter to SVM based on RBF kernel function in experimental results,it is found that genetic algorithm has higher search speed in optimum parameter.Thus,genetic algorithm is more effective in practice.
出处 《计算机与数字工程》 2016年第4期575-577,595,共4页 Computer & Digital Engineering
基金 2014年五邑大学青年基金(编号:2014zk10) 2015五邑大学青年基金(编号:2015zk11) 2015年江门市科技计划项目(编号:201501003001556)资助
关键词 支持向量机 核函数 参数 遗传算法 SVM kernel function parameter genetic algorithm
  • 相关文献

参考文献9

二级参考文献44

  • 1Ge Yong Department of Earth and Atmospheric Science, York University, Toronto, ON, M3J 1P3, Canada,State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China Cheng Qiuming Department of Earth and Atmospheric Science, York University, Toronto, ON, M3J 1P3, Canada,Earth Systems and Mineral Resource Engineering Lab, China University of Geosciences, Wuhan 430074, China Zhang Shenyuan Department of Earth and Atmospheric Science, York University, Toronto, ON, M3J 1P3, Canada,Department of Resource and Earth Science, China University of Mining & Technology, Beijing 100083, China.Edge Effect Correction in the S-A Method for Geochemical Anomaly Separation[J].Journal of China University of Geosciences,2004,15(4):379-387. 被引量:33
  • 2奉国和,朱思铭.基于聚类的大样本支持向量机研究[J].计算机科学,2006,33(4):145-147. 被引量:14
  • 3Li Bo Li Xinjun Zhao Zhiyan.Novel algorithm for constructing support vector machine regression ensemble[J].Journal of Systems Engineering and Electronics,2006,17(3):541-545. 被引量:6
  • 4王睿.关于支持向量机参数选择方法分析[J].重庆师范大学学报(自然科学版),2007,24(2):36-38. 被引量:39
  • 5Vapnik V.Statistical learning theory[M].New York:Wiley,1998.
  • 6Barzilay O,Brailovsky V L.On domain knowledge and feature selection using a support vector machine[J].Pattern Recognition Letters, 1999,20 ( 5 ) : 475-484.
  • 7Su C T,Yang C H.Feature selection for the SVM:An application to hypertension diagnosis[J].Expert Systems with Applications,2008, 34( 1 ) :754-763.
  • 8Ayat N E,Cheriet M,Suen C Y.Automatie model selection for the optimization of SVM kernels[J].Pattem Recognition,2005,38 (10) : 1733-1745.
  • 9Adankon M M,Cheriet M.Optimizing resources in model selection for support vector machine[J].Pattern Recognition,2007,40 (3):953 - 963.
  • 10Wang W J,Men C Q,Lu W Z.Online prediction model based on support vector machine[J].Neurocomputing,2008,71(4-6):550-558.

共引文献374

同被引文献109

引证文献9

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部