期刊文献+

ZnO薄膜硅微压电矢量水听器 被引量:6

ZnO thin film piezoelectric micromachined vector hydrophone
原文传递
导出
摘要 提出了一种基于ZnO压电薄膜的硅微压电矢量水听器,其核心部件是利用微电子机械系统(MEMS)技术制作的悬臂梁结构压电加速度计。由近似解析和有限元分析,得出加速度计的灵敏度和谐振频率,并在此基础上对其进行了优化设计。研制了MEMS压电加速度计,并装配后构成MEMS矢量水听器。测试结果表明:加速度灵敏度在20~1,200 Hz范围内约为0.83 mV/(m/s^2)。经过液柱法测量,在1 kHz时,MEMS矢量水听器等效声压灵敏度为-229.5 dB(ref.1V/μPa),比同类型压阻式MEMS矢量水听器的灵敏度高17 dB以上。 A silicon micromachined vector hydrophone based on ZnO thin film has been first developed. The key elements of MEMS piezoelectric vector hydrophone are piezoelectric accelerometers with cantilever beam structures fabricated by microelectromechanical systems (MEMS) technology. The approximate theory and finite element method were adopted in MEMS piezoelectric accelerometer structure analysis, and the influence of materials and structural parameters on accelerometer's sensitivity and resonance frequency were obtained. The MEMS piezoelectric accelerometers were fabricated using silicon micromachining process, and MEMS piezoelectric vector hydrophone was assembled successfully. The measured results show that the sensitivity of MEMS piezoelectric accelerometer is flat from 20 Hz to 1200 Hz, and equal to about 0.83 mV/(m/s2). The equivalent pressure sensitivity at 1 kHz of MEMS piezoelectric vector hydrophone is -229.5 dB (ref. 1 V/μPa), which is 17 dB higher than that of the same type MEMS piezoresistive vector hydrophone.
出处 《声学学报》 EI CSCD 北大核心 2016年第3期273-280,共8页 Acta Acustica
基金 国家自然科学基金(11074274 11174319 11474304)资助
关键词 矢量水听器 ZnO 压电加速度计 微压 压电薄膜 加速度灵敏度 近似解析 微电子机械系统 压阻式 标准加速度计 Accelerometers Electromechanical devices Finite element method Hydrophones MEMS Metallic films Micromachining Optical films Piezoelectric devices Thin films Vectors Zinc oxide
  • 相关文献

参考文献19

  • 1惠俊英,李春旭,梁国龙,刘宏.声压和振速联合信号处理抗相干干扰[J].声学学报,2000,25(5):389-394. 被引量:55
  • 2桑恩方,乔钢.基于声矢量传感器的水声通信技术研究[J].声学学报,2006,31(1):61-67. 被引量:15
  • 3Xue Chenyang, Chen Shang, Zhang Wendong et al. De- sign, fabrication, and preliminary characterization of a novel MEMS bionic vector hydrophone. Microelectronics Journal, 2007; 38(10): 1021-1026.
  • 4Zhang Guojun, Wang Panpan, Guan Linggang et al. Im- provement of the MEMS bionic vector hydrophone. Micro- electronics Journal, 2011; 42(5): 815-819.
  • 5Guan Linggang, Zhang Guojun, Xu Jiao et al. Design of T-shape vector hydrophone based on MEMS. Sensors and Actuators A, 2012; 188(1):35-40.
  • 6Li Jinping, Chen Lijie, Gong Zhanjiang et al. A low-noise MEMS acoustic vector sensor. 2013 International Con- ference on Optoelectronics and Microelectronics (ICOM), 2013:121-124.
  • 7Zhou Xiaofeng, Che Lufeng, Liang Shenglin et al. Design and fabrication of a MEMS capacitive accelerometer with fully symmetrical double-sided H-shaped beam structure. Microelectronic Engineering, 2015; 131(1):51- 57.
  • 8Dai Gang, Li Mei, He Xiaoping et al. Thermal drift anal- ysis using a multiphysics model of bulk silicon MEMS ca- pacitive accelerometer. Sensors and Actuators A, 2011; 172(2): 369-378.
  • 9Li Wei, Song Zhaohui, Li Xiaolin et al. A novel sandwich capacitive accelerometer with a double-sided 16-beam-massstructure. Microelectronic Engineering, 2014; 115(1): 32-38.
  • 10Hindrichsen C C, Larsen J, Thomsen E V et al. Circular piezoelectric accelerometer for high band width applica- tion. IEEE SENSORS Conference, 2009:475-478.

二级参考文献9

共引文献66

同被引文献47

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部