期刊文献+

基于状态依赖检测的视频运动目标轨迹跟踪算法 被引量:12

Video moving target trail tracking algorithm based on state dependence detection
在线阅读 下载PDF
导出
摘要 目前大多数的目标跟踪算法都假设目标检测的概率与轨迹的状态无关,但是随着目标跟踪性能的降低,这个假设通常不正确,针对此问题,提出一种基于状态检测的目标运动轨迹跟踪算法。不同于大多数现有算法,该算法在目标运动轨迹与检测状态相关的基础上展开。首先预测从先前时刻到当前时刻的每个跟踪的概率密度函数;然后从测量值集合中选取一个子集用于更新,并计算相似度测量;最后迭代计算跟踪质量和目标轨迹评估,将目标检测的状态依赖概率融入到多目标跟踪器中。利用二维多目标跟踪进行仿真实验,交替固定传感器每秒都对监控区域进行扫描,结果显示,跟踪确认率可达97%,显著提高了跟踪性能。此外,该算法在其他交通视频上也有较好的跟踪效果,具有较好的实用性。 The majority of target tracking algorithms assume that the probability of the target detection is independent of track state,but it is usually incorrect with the performance degradation of the target tracking. For this issue,a target moving trail tracking algorithm based on state detection is proposed. Unlike most current algorithms,the proposed algorithm is unfolded based on the correlation of target moving trail and detection state. Each tracked probability density function from previous moment to current moment is forecasted,and then a subset for update is selected from the measured value set and the similarity measurement is calculated. The tracking quality is iteratively calculated,the target trail is finally evaluated,and the state dependence probability of target detection is fused into multi-target tracker. The simulation test was performed by means of the two-dimensional multi-target tracking. The alternate fixed sensors are used to scan the monitored area per second. The scanning results show that the tracking identification rate can reach up to 97%,and the tracking performance is significantly improved. In addition,the algorithm has a good tracking effect in other traffic videos,and has good practicability.
出处 《现代电子技术》 北大核心 2016年第7期51-56,共6页 Modern Electronics Technique
基金 江苏省高校自然科学研究项目(14KJB520036)
关键词 多目标跟踪 视频跟踪 运动轨迹仿真 状态检测 multi-target tracking video tracking moving trail simulation state detection
  • 相关文献

参考文献12

  • 1周小娟,李春晓.基于偏最小二乘分析和稀疏表示的目标跟踪算法[J].重庆邮电大学学报(自然科学版),2014,26(1):104-110. 被引量:6
  • 2江晓莲,李翠华,李雄宗.基于视觉显著性的两阶段采样突变目标跟踪算法[J].自动化学报,2014,40(6):1098-1107. 被引量:15
  • 3NING J,ZHANG L,ZHANG D,et al.Robust mean-shift tracking with corrected background-weighted histogram[J].IET computer vision,2012,6(1):62-69.
  • 4COMANICIU D,RAMESH V,MEER P.Kernel-based object tracking[J].IEEE transactions on pattern analysis and machine intelligence,2003,40(5):564-575.
  • 5KALAL Z,MIKOLAJCZYK K,MATAS J.Tracking-learningdetection[J].IEEE transactions on pattern analysis and machine intelligence,2012,34(7):1409-1422.
  • 6Anon.Index of personal Z.Kalal TLD[EB/OL].[2010-02-05].http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/.
  • 7MUSICKI D,SONG T L,LEE H H,et al.Correlated Dopplerassisted target tracking in clutter[J].IET radar,sonar and navigation,2013,7(1):94-100.
  • 8周良毅,王智,王营冠.基于动态遮挡阈值的多视角多目标协作追踪[J].计算机研究与发展,2014,51(4):813-823. 被引量:5
  • 9SONG T L,MUSICKI D,KIM D.Target tracking with target state dependent detection[C]//Proceedings of 2012 15th IEEE International Conference on Information Fusion.Singapore:IEEE,2012:324-329.
  • 10林运国,雷红轩,李永明.量子马尔可夫链安全性模型检测[J].电子学报,2014,42(11):2191-2197. 被引量:7

二级参考文献78

  • 1李永明.基于量子逻辑的有穷自动机与单体二阶量子逻辑[J].中国科学(F辑:信息科学),2009,39(11):1135-1145. 被引量:11
  • 2周良毅,王智.基于遮挡变量的多视角目标融合追踪算法[J].计算机研究与发展,2011,48(S2):57-64. 被引量:2
  • 3侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:256
  • 4查宇飞,毕笃彦.一种基于粒子滤波的自适应运动目标跟踪方法[J].电子与信息学报,2007,29(1):92-95. 被引量:19
  • 5Taj M, Cavallaro A. Audio-assisted trajectory estimation in non-overlapping multi-camera networks ECJ //Proc of the 34th IEEE Int Conf on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE, 2009:3517-3520.
  • 6Nettleton E, Durrant-Whyte H, Sukkarieh S. A robust architecture for decentralised data fusion [C] //Proc of the 11th Int Conf on Advanced Robotics. Piscataway, NJ: IEEE, 2003:1425-1430.
  • 7Medeiros H, Park J, Kak A. Distributed object tracking using a cluster-based kalman filter in wireless camera networks[J].IEEE Journal of Selected Topics in Signal Processing, 2008, 2(4): 448-463.
  • 8Kim K, Davis L. Multi-camera tracking and segmentation of occluded people on ground plane using search-guided particle filtering [G] //LNCS 3953 ; Proc of the 9th European Conf on Computer Vision. Berlin; Springer, 2006: 98-109.
  • 9Tyagi A, Potamianos G, Davis J. Fusion of multiple camera views for kernel-based 3D tracking [C] //Proe of the 8th IEEE Workshop on Motion and Video Computing. Piscataway, NJ: IEEE, 2007: 52-60.
  • 10Black J, Ellis T, Rosin P. Multi view image surveillance and tracking [C] //Proc of the 6th IEEE Workshop on Motion and Video Computing. Los Alamitos, CA: IEEE Computer Society Press, 2002: 169-174.

共引文献29

同被引文献116

引证文献12

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部