期刊文献+

极化敏感线阵的模值约束降维Root-MUSIC算法 被引量:9

A Reduced-dimensional Root-MUSIC Algorithm with the Modulus Constraint Based on Polarization Sensitive Linear Array
在线阅读 下载PDF
导出
摘要 为了解决极化敏感线阵波达方向角和极化参数联合估计运算量大的问题,本文提出了模值约束降维Root-MUSIC算法。该算法通过对波达方向角和极化参数进行剥离,先采用Root-MUSIC算法进行DOA估计,然后根据模值约束条件构造代价函数,通过闭合式解求出极化参数估计。与传统MUSIC算法相比,该算法避免了谱峰搜索,大大提高了运算效率。与ESPRIT算法相比,该算法避免了参数配对问题。计算机仿真结果验证了该算法的正确性,且具有较高的成功率与精确度。在两目标信号入射角度接近时,也能够很好的分辨出两信号。 To reduce the large computation of joint direction-of-arrival( DOA) and polarization parameters estimation based on polarization sensitive linear array,a reduced-dimensional Root-MUSIC with the modulus constraint is proposed. The algorithm in this paper estimates the DOA and polarization parameters in two separate steps. In step one,DOA parameter is separated from polarization parameters and estimated by Root-MUSIC algorithm; in step two,cost function is constructed according to modulus constraint and polarization parameters are obtained with closed-form formulas. Compared with the traditional MUSIC algorithm,the algorithm in this paper avoids the spectrum peak search,and greatly improves the operation efficiency. Compared with the ESPRIT algorithm,this algorithm avoids parameters matching problem. The computer simulation results verify the correctness of this algorithm,and as well as its high success rate and precision of the angle estimation. When the incident angles of two target signals are close,it also can distinguish the two signals very well.
出处 《信号处理》 CSCD 北大核心 2016年第2期173-178,共6页 Journal of Signal Processing
基金 国家自然科学基金(61371184 61301262) 中国博士后科学基金特别资助(115719) 中央高校基本科研业务费(ZYGX2013J022)
关键词 极化敏感线阵 参数估计 约束条件 求根MUSIC算法 polarization sensitive linear array parameter estimation constraint condition root-MUSIC algorithm
  • 相关文献

参考文献11

  • 1庄钊文.极化敏感阵列信号处理[M].北京:国防工业出版社,2006: 204-209.
  • 2Schmidt R O. Multiple emitter location and signal param- eter estimation[ J]. IEEE Trans. on Antennas and Propa- gation, 1986, 34 ( 3 ) :276-280.
  • 3Oh D, Li Y. Joint estimation of direction of departure and direction of arrival for multiple-input multiple-output radar based on improved joint ESPRIT method [ J 1- IET Radar Sonar Navig, 2015, 9(3) : 308-317.
  • 4贾维敏,姚敏立,宋建社.基于时空极化导向矢量的阵列信号多维参数联合估计[J].信号处理,2007,23(6):869-872. 被引量:1
  • 5Bhaskr D Rao, KV Hari. Performance analysis of Root- MUSIC[ Jl. IEEE Trans. on Acoustic Speech and Signal Processing, 1989, 7(12) : 1939-1949.
  • 6Lei Shen,Zhiwen Liu,Xiaoming Gou,Yougen Xu.Polynomial-rooting based fourth-order MUSIC for direction-of-arrival estimation of noncircular signals[J].Journal of Systems Engineering and Electronics,2014,25(6):942-948. 被引量:5
  • 7Zhang Xiaofei, Xu Lingyun, Xu Lei, et al. Direction of Departure (DOD) and Direction of Arrival (DOA) esti- mation in MIMO radar with reduced-dimension MUSIC [J]. IEEE Commnnieations Letters, 2010, 14 (12) : 1161-1163.
  • 8蔡晶晶,秦国栋,李鹏,赵国庆.模值约束的降维MUSIC二维DOA估计[J].系统工程与电子技术,2014,36(9):1681-1686. 被引量:6
  • 9蔡晶晶,鲍丹,李鹏,赵国庆.强约束优化降维MUSIC二维DOA估计[J].电子与信息学报,2014,36(5):1113-1118. 被引量:15
  • 10Miron S, Le Bihan N, Mars J I. Quaternion-music ibr vector-sensor array processing I J 1- IEEE Transactions on Signal Processing, 2006, 64(4): 1218-1229.

二级参考文献53

  • 1周欣,石要武,郭宏志.有色噪声背景下多径信号的二维DOA和极化参数同时估计算法[J].吉林大学学报(工学版),2009,39(3):797-802. 被引量:3
  • 2程伟,左继章.基于时空结构的阵列信号三维参数同时估计方法[J].通信学报,2004,25(10):67-74. 被引量:5
  • 3曹清平著.雷达极化技术与极化信息应用[M].国防工业出版社.2006:1-3.
  • 4Miron S, Le Bihan N, and Mars J I. Quaternion-music for vector-sensor array processing[J]. IEEE Transactions on Signal Processing, 2006, 54(4): 1218-1229.
  • 5Bihan N L and Mars J. Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing[J]. Signal Processing, 2004, 84(7): 1177-1199.
  • 6Bliss B, Chan A, and Eapen A. Vector Sensors Array Design[M]. Lexington, MA: MIT Lincoln -aborary presentation, April 2004.
  • 7SMir H and Sahr J D. Passive direction finding using airborne vector sensors in the presence of manifold perturbations[J]. IEEE Transactions on Signal Processing, 2007, 55(1): 156-164.
  • 8Li J, Compton R T. Two-dimensional angle and polarization estimation using the ESPRIT algorithm ,IEEE Trans. on AP [J]. 1992,40(4) :550-555.
  • 9Wong K T, Zoltowski M D. Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation [J]. IEEE Trans. on AP, 1997,45 (10) : 1467-1474.
  • 10van der Veen A J, Ober PB, and Deprettere EF. Azimuth and elevation computation in high resolution DOA estimation [ J ]. IEEE Tran. SP, 1992,40 ( 7 ) : 1828-1832.

共引文献48

同被引文献57

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部