期刊文献+

基于栈式降噪自编码神经网络的车牌字符识别 被引量:16

License plate character recognition based on stacked denoising autoencoder
在线阅读 下载PDF
导出
摘要 为解决复杂自然场景下车牌字符受噪声等影响识别困难的问题,提出一种基于栈式降噪自编码神经网络的车牌识别方法。基于降噪自编码模型重构思想自动提取相关特征,通过使用无监督逐层贪婪预训练和有监督微调的方法对深度自编码神经网络进行训练,对复杂环境下低质量的车牌字符图像具有较好的鲁棒性能。与浅层的机器学习算法、传统栈式自编码神经网络和卷积神经网络相比,栈式降噪自编码神经网络有较好的字符识别性能。基于实际道口电子警察采集的车牌图像测试集的实验结果验证了该方法的有效性。 To solve problem of the license plate characters under complex natural scenes affected by noise and etc. , a method of the license plate characters recognition based on a stacked denoising autoencoder was proposed. Relevant features based on the reconstruction theory of denoising autoencoder were automatically extracted, and unsupervised greedy layer-wise pre-training and supervised fine-tuning were utilized to train the deep autoencoder network, so that it had good robust performance on obtaining the license plate characters with low quality in the complex environment. Compared with the shallow machine learning algo- rithms, the traditional stacked autoencoder and convolutional neural network, stacked denoising autoencoder is superior in recog- nition. Results of experiments of the license plate image test set collected by electronic police at the actual crossing verified the ef- fectiveness of the application method.
出处 《计算机工程与设计》 北大核心 2016年第3期751-756,共6页 Computer Engineering and Design
基金 江苏省自然科学基金项目(BK20130207) 江苏省博士后基金项目(1301029C)
关键词 车牌字符识别 栈式降噪自编码神经网络 重构 逐层贪婪预训练 微调 license plate character recognition stacked denoising autoencoder reconstruction greedy layer-wise pre-training fine-tuning
  • 相关文献

参考文献13

  • 1Bengio Y. I.emaaing deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2 (1): 1-127.
  • 2Cirean DC, Meier U, Gambardella LM, et al. Convolutional neural network committees for handwritten character classifica- tion [C] //International Conference on Document Analysis and Recognition, 2011: 1135-1139.
  • 3Zang D, Chai Z, Zhang J, et al. Vehicle license plate recogni- tion using visual attention model and deep learning [J]. Journal of Electronic Imaging, 2015, 24 (3): 033001.
  • 4赵志宏,杨绍普,马增强.基于卷积神经网络LeNet-5的车牌字符识别研究[J].系统仿真学报,2010,22(3):638-641. 被引量:151
  • 5Tan CC, Eswaran C. Reconstruction and recognition of face and digit images using autoencoders [J]. Neural Computing and Applications, 2010, 19 (7): 1069-1079.
  • 6刘高平,赵杜娟,黄华.基于自编码神经网络重构的车牌数字识别[J].光电子.激光,2011,22(1):144-148. 被引量:14
  • 7Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep net- work with a local denoising criterion [J]. Journal of Machine Learning Research, 2010, 11 (6): 3371-3408.
  • 8Ngiam J, Coates A, Lahiri A, et al. On optimization methods for deep learning [C] //28th International Conference on Ma- chine Learning, 2011: 265-272.
  • 9Erhan D, Bengio Y, Courville A, et al. Why does unsuper- vised pre-training help deep learning[J].Journal of Machine Learning Research, 2010, 11 (3): 625-660.
  • 10Zang F, Zhang J. Softmax discriminant classifier [C] //3rd International Conference on Multimedia Information Networ- king and Security, 2011 :16-19.

二级参考文献13

  • 1任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 2贾婧,葛万成,陈康力.基于轮廓结构和统计特征的字符识别研究[J].沈阳师范大学学报(自然科学版),2006,24(1):43-46. 被引量:11
  • 3廉飞宇,付麦霞,张元.基于支持向量机的车辆牌照识别的研究[J].计算机工程与设计,2006,27(21):4033-4035. 被引量:12
  • 4Al-Hmouz R, S Challa. Intelligent Stolen Vehicle Detection using Video Sensing [C]// Proceeding of Information, Decision and Control. Adelaide, Qld., Australia. USA: IEEE, 2007: 302-307.
  • 5LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition [C]//Proc. IEEE, 1998. USA: IEEE, 1998: 2278-2324.
  • 6Steve Lawrence, C Lee Giles, Ah Chung Tsoi, Andrew D Back. Face Recognition: A Convolutional Neural Network Approach [J]. IEEE Trans. on Neural Networks (S1045-9227), 1997, 8(1): 98-113.
  • 7Lauer F, C Y Suen, Bloch G. A trainable featare extractor for handwritten digit recognition [J]. Pattern Recognition (S0031-3203), 2007, 40(6): 1816-1824.
  • 8Tivive, Fok Hing Chi, Bouzerdoum, Abdesselam. An eye feature detector based on convolutional neural network [C]// Proc. 8th Int. Symp. Signal Process. Applic. Sydney, New South Wales, Australia. USA: IEEE, 2005: 90-93.
  • 9Szarvas Mate, Yoshizawa Akira, Yamamoto Munetaka, Ogata Jun. Pedestrian detection with convolutional neural networks [C]//IEEE Intelligent Vehicles Symposium Proceedings. USA: IEEE, 2005: 224-229.
  • 10Y Le Cun, U Muller, J Ben, E Cosatto, B Flepp. Off-road obstacle avoidance through end-to-end learning [M]. Advances in Neural Information Processing Systems. USA: MIT Press, 2005.

共引文献162

同被引文献127

引证文献16

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部