期刊文献+

Sn_mAs_n(m+n≤6)团簇的密度泛函理论研究

Calculation of Sn_mAs_n(m+n≤6) Clusters in Density Functional Theory
在线阅读 下载PDF
导出
摘要 采用密度泛函理论中的广义梯度近似对Sn_mAs_n(m+n≤6)团簇的各种可能构型进行了几何参数全优化,得到相应的基态结构;并对基态构型的平均结合能、Mulliken布居和偶极矩进行了系统研究。研究结果发现Sn_mAs_n二元团簇基态结构更倾向于形成Sn-As键数最多的构型,并且占有Sn原子比例大的最稳定结构类似于纯锡团簇的构型;掺杂偶数个As原子可以提高锡砷二元团簇的稳定性;Sn原子是电荷的捐赠者,而As原子则是电荷的接收者;二元Sn_mAs_n团簇均为极性分子,其中团簇SnAs偶极矩最大,极性最强,团簇Sn_4As_2的偶极矩最小,极性最弱。 The possible equilibrium geometries of SnmAsn(m + n ≤ 6) clusters,rich in tin-refining slag,were calculated and optimized in the density functional theory generalized gradient approximation,to single out the ground-state structure of the binary alloy cluster.The variables,including the average binding.energy,Mulliken population and dipole moment,were evaluated.The calculated results show that it is favorable for the ground-state SnmAsn(m + n≤6)cluster to form a maximum number of Sn-As bonds,and that the stable structure with more Sn atoms better resembles that of Sn-cluster.Doping of an even number of As atoms into a Sn-As cluster increases its stability.All SnmAsn clusters are large polar molecules with Sn-donor and As-acceptor.The SnAs and Sn2As2 clusters werefound to have the strongest and the weakest dipole moments and polarities,respectively.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2016年第2期168-174,共7页 Chinese Journal of Vacuum Science and Technology
基金 国家自然科学基金青年基金项目(51104078) 国家自然科学基金地区基金项目(51264023) NSFC-云南联合基金项目(U1202271) 教育部创新团队(IRT1250) 科技部重点领域创新团队(2014RA4018)
关键词 SnmAsn(m+n≤6)团簇 几何结构 平均结合能 偶极矩 密度泛函理论 SnmAsn(m+n≤6) clusters Geometric structure Average binding energy Dipole moment Density functional theory
  • 相关文献

参考文献21

  • 1丘克强,李晓勇,戴永年.高砷焊锡真空蒸馏脱铅砷[J].中国有色金属学报,1993,3(4):30-33. 被引量:5
  • 2Assadollahzadeh B,Sch!?fer S,Schwerdtfeger J.Electronic Properties for Small Tin Clusters Sn_n(n≤20)from Density Functional Theory and the Convergence toward the Solid State[J].Journal of Computational Chemistry,2010,31(5):929-937.
  • 3Majumder C,Kumar V,Mizuseki H,et al.Small Clusters of Tin:Atomic Structures,Energetics,and Fragmentation Behavior[J].Physical Review,2001,B64(23):233405.
  • 4Cui L F,Wang L M,Wang L S.Evolution of the Electronic Properties of Sn_n-Clusters(n=4-45)and the Semiconductor-to-Metal Transition[J].The Journal of Physical Chemistry,2007,126(6):064505.
  • 5Zang Q J,Chen G J,Lu W C.Structural Transitions of tin Clusters:Sn_n(n=34-44)[J].Chemical Physics Letters,2012,552:69-72.
  • 6Bachels T,Sch(a|¨)fer R.Formation Enthalpies of Sn Clusters:a Calorimetric Investigation[J].Chemical Physics Letters,1999,300:177-182.
  • 7Liang G,Wu Q,Yang J C.Probing the Electronic Structure and Property of Neutral and Charged Rsenic Clusters(As_n~((+1,0,-1)),n≤8)Using Gaussian-3 Theory[J].The Journal of Physical Chemistry,2011,115(29):8302-8309.
  • 8池贤兴,田善喜,徐克尊.砷原子团簇结构的量子化学密度泛函理论研究[J].Chinese Journal of Chemical Physics,2002,15(1):22-28. 被引量:7
  • 9Ziammerman J A,Bach S B H,Watson C H et al.On/Molecule Reactions of Arsenic and Phosphorus Cluster Ions:Ionization Potentials and Novel Reaction Pathways[J].The Journal of Physical Chemistry,1991,95(1):98-104.
  • 10段少飞,陈秀敏,杨斌,刘大春,徐宝强,戴永年.砷铁化合物真空热分解的从头算分子动力学模拟[J].真空科学与技术学报,2014,34(10):1128-1134. 被引量:4

二级参考文献30

  • 1Ballone P, Jones R O. J. Chem. Phys, 1994, 100: 4941
  • 2Mingzuo Shen, Schaefer Ⅲ. J. Chem. Phys, 1994, 101: 2261
  • 3Voako S H, Wilk L, Nusair M. Can. J. Phys, 1980, 58: 1200
  • 4Lee C, Yang W, Parr R G. Phys. Rev, 1988, B37: 785
  • 5Becke A D. J. Chem. Phys, 1993, 98: 5648
  • 6Frisch M J, et al. Gaussian 98, Revision A.7, Guassian, Inc, Pittsburgh, PA, 1998
  • 7Huber K P, Herzberg G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold, New York, 1979
  • 8Bondybey V E, Schwartz G P, Griffiths J E. J. Mol. Spectrosc, 1981, 89: 328
  • 9Morino Y, Ukaji T, Ito T. Bull. Chem. Soc. Jpn, 1966, 39: 64
  • 10Gausa M, Kaschner R, Seifert G, et al. J. Chem. Phys, 1996, 104: 9719

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部