期刊文献+

L型阵列的二维DOA估计方法 被引量:4

Method of two-dimensional DOA estimation for L-shaped array
在线阅读 下载PDF
导出
摘要 低信噪比(signal-to-noise ratio,SNR)或小接收快拍数条件下,经典的二维(two-dimensional,2D)波达方向(direction of arrival,DOA)算法存在估计精度低的缺点。针对该问题,充分利用L型阵列接收数据的自、互相关信息,提出一种适用于低SNR及小接收快拍数环境下的2D DOA估计新方法。该方法首先通过解析优化2D谱峰搜索问题,获得方位角与仰角之间的特定约束关系,进而将包含2D角度参量的目标函数转化为只包含一维(one-dimensional,1D)角度参量,即可通过1D谱峰搜索获得方位角(或仰角)估计值,最后再次利用该约束关系求得与之对应的仰角(或方位角)估计值。该方法只需1D谱峰搜索,而且所得2D角度估计参数可自动实现配对。计算机仿真验证了该方法在低SNR及小接收快拍数情况下的有效性。 Under low SNR region or with the small number of the snapshots,the classic two-dimensional( 2D) direction-ofarrival( DOA) algorithms have the drawback of low estimation accuracy. To resolve the problem,the paper presents a new method of 2D DOA estimation suitable for low signal-to-noise( SNR) region and small number of the snapshots by fully taking advantage of the autocorrelation and cross-correlation information of the received snapshots of L-shape sensor arrays.Analytically optimizing the problem of 2D spectrum peak search,we obtain the specific constraint relationship between the azimuth and elevation. On the basis of it,the method firstly converts the objective function with 2D angle parameter into the one with one-dimensional( 1D) angle parameter. Then the azimuth( or elevation) is obtained by 1D searching. Finally,the elevation( or azimuth) can be estimated according to the specific constraint relationship between the azimuth and elevation. The method only needs 1D spectrum peak searching,and the estimated azimuth and elevation can be automatically matched. The computer simulations verify the effectiveness of the proposed method under low SNR region and with the small number of the snapshots.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2016年第1期24-29,共6页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家科技重大专项(2014ZX03001009-003)~~
关键词 波达方向(DOA)估计 低信噪比(SNR) 小快拍数 信源个数 direction-of-arrival(DOA) estimation low signal-to-noise(SNR) small snapshots the number of sources
  • 相关文献

参考文献17

  • 1SCHMIDT R 0. Multiple emitter location and signal pa-rameter estimation [ J ] . IEEE Transactions on Antennasand Propagation, 1986, 34(3) :276-280.
  • 2ROY R, KAILATH T. ESPRIT-Estimation of signal pa-rameters via rotational in variance techniques[ J]. IEEETrans ASSP, 1986, 37(7) : 984-995.
  • 3GU Jianfeng, ZHU Weiping, SWAMY M N S. Perform-ance analysis of 2-D DOA estimation via L-shaped array[C ] //Electrical & Computer Engineering ( CCECE ),201225th IEEE Canadian Conference on. Quebec, Cana-da; IEEE Press, 2012 : 14.
  • 4HUA Yingbo, SARKAR T K, WINER D D. An L-shaped array for estimating 2-D directions of wave arrival[J ]. IEEE transactions on antennas and propagation,1991,39(2) : 143-146.
  • 5AL-JAZZAR S 0,MGLERNON D C,SMADI M A. SVD-based joint azimuth/elevatio n estimation with automaticpairing[ J]. Signal processing, 2010,90(5) : 1669-1675.
  • 6TAYEM N,KWON H M. L-shape 2-dimen-sional arrivalangle estimation with propagator method [ J ]. IEEETransactions on Antennas and Propagation, 2005, 53(5); 1622-1630.
  • 7GU Jianfeng, WEI Ping. Joint SVD of two cross-correla-tion matrices to achieve automatic pairing in 2-D angle es-timation problems [ J ]. IEEE Antennas and WirelessPropagation Letters,2007, 6(3) : 553-556.
  • 8XIN Jingmin,SANO Akira. Computationally efficientsubspace-based method for direction-of-arrival estimationwithout eigendecomposition [ J ] . IEEE Transactions onSignal Processing, 2004, 52(4) : 876-893.
  • 9WANG Guangmin, XIN Jingmin, ZHENG Nanning, etal. Computationally efficient subspace-ba-sed method fortwo-dimensional direction estimation with L-shaped array[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3197-3212.
  • 10孙心宇,周建江,汪飞.一种双L型阵列DOA估计参量的精确配对方法[J].系统工程与电子技术,2010,32(6):1125-1130. 被引量:1

二级参考文献43

  • 1Schmidt R.Multiple emitter location and signal parameter esti-mation[J].IEEE Trans.on Antennas and Propagation,1986,34(3):276-280.
  • 2Roy R,Paulraj A,Kailath T.ESPRIT-A subspace rotation approach to estimation of parameters of eisoids in noise[J].IEEE Trans.on Acoustics,Speech and Signal Processing,1986,34(5):1340-1342.
  • 3Marcos S,Marsal A,Benidir M.The propagator method for source bearing estimation[J].Signal Processing,1995,42 (2):121-138.
  • 4Gan L,Gu J F,Wei Ping.Estimation of 2 -D DOA for noncir-cular sources using simultaneous SVD technique[J].IEEE Antennas and Wireless Propagation Letter,2008,X:1-4.
  • 5Abeida H,Delmas J P.MUSIC-like estimation of direction of arrival for noncircular sources[J].IEEE Trans.on Signal Pro-cessing,2006,54(7):2678-2690.
  • 6Haardt M,Romer F.Enhancements of unitary ESPRIT for non-circular sources[C] // Proc.IEEE International Conference Acoustics,Speech,Signal Processing,2004,Ⅱ:101-104.
  • 7Liu J,Huang Z T,Zhon Y Y.Azimuth and elevation estimation for noncircular signals[J].IET Electronics Letters,2007,43 (20):1117-1119.
  • 8Roemer F,Haardt M.Efficient 1-D and 2-D DOA estimation for non-circular sources with hexagonal shaped espararrays[C] //Proc.of IEEE International Conference Acoustics,Speech and Signal Processing,2006,Ⅳ:881-884.
  • 9Gao F F,Nallanathan A,Wang Y.Improved MUSIC under the coexistence of both circular and noncircular sources[J].IEEE Trans.on Signal Processing,2008,56(7):3033-3038.
  • 10Tayem N,Kwon H M.L-shape 2-dimensional arrival angle estimation with propagator method[J].IEEE Trans.on Antennas and Propagation,2005,53(5):1622-1630.

共引文献208

同被引文献19

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部